Electron Properties of F, and N Doped Hematite: The Application for Photocatalysis

Article Preview

Abstract:

To improve photocatalytic activity of hematite, the electronic structures of F, and N doped hematite were studied via the first-principles band calculations with GGA+U methods. By analyzing the band structures of pure and doped hematite, we showed that the significant acceptor levels were induced by N dopants, whereas F dopants created shallow donor levels and Fermi energy entered the conduction bands. Our findings proposed that p-type dopant N was in favor of realizing the expectation of producing hydrogen in the visible-light photoelectrochemical (PEC) water splitting without voltage bias, and n-type dopant F was helpful to solve the problem of recombination of photo-produced electron-hole pairs The results of our calculation should be applicable to the improvement of photocatalytic performances of hematite.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 562-564)

Pages:

298-301

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima and K. Honda: Nature 238(1972), p.37.

Google Scholar

[2] M. Grätzel: Nature 414 (2001), p.338.

Google Scholar

[3] A. Kay, I. Cesar, and M. Grätzel: J. Am. Chem. Soc. 128 (2006), p.15714.

Google Scholar

[4] R. Yu, Z. M. Li, D. Wang, X. Y. Lai, C. J. Xing, and X. R. Xing: Solid State Sci. 11 (2009), p. (2056).

Google Scholar

[5] B. C. Faust, M. R. Hoffmann, D. W. Bahnemann: J. Phys. Chem. 93 (1989), p.6371.

Google Scholar

[6] M. Fukazawa, H. Matuzaki, and K. Hara: Sens. Actuator. B 13 (1993), p.521.

Google Scholar

[7] C. Jorand Sartoretti, B. D. Alexander, R. Solarska, I. A. Rutkowska, J. Augustynski, and R. Cerny: J. Phys. Chem. B 109 (2005), p.13685.

DOI: 10.1021/jp051546g

Google Scholar

[8] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell: Int. J. Hydrogen Energy 27 (2002), p.991.

Google Scholar

[9] Yichuan Ling, Gongming Wang, Damon A. Wheeler, Jin Z. Zhang, and Yat Li: Nano lett. 11 (2011), p.2119.

Google Scholar

[10] N. T. Hahn, and C. B. Mullins: Chem. Mater. 22 (2010), p.6474.

Google Scholar

[11] S. D. Tilly, M. Cornuz, K. Sivula, and M. Gratzl: Angew. Chem., Int. Ed. 49 (2010), p.6405.

Google Scholar

[12] J. A. Glasscock, P. R. F. Barnes, I. C. Plumb, and N. Savvides: J. Phys. Chem. C 111 (2007), p.16477.

Google Scholar

[13] X. Y. Meng, G. W. Qin, S. Li, X. H. Wen, Y. P. Ren, W. L. Pei, and L. Zuo: Appl. Phys. Lett. 98 (2011), p.112104.

Google Scholar

[14] G. Kresse and J. Furthmuller: Phys. Rev. B 54 (1996), p.11169.

Google Scholar

[15] H. J. Monkhorst and J. D. Pack: Phys. Rev. B 13 (1976), p.5188.

Google Scholar

[16] C. G. V. Walle and J. Neugebauer: Appl. Phys. Rev. 95 (2004).

Google Scholar