[1]
Liu, Yongshou; Liu, Jun; Shao, Xiao-Jun. Study on the residual stress fields, surface quality, and fatigue performance of cold expansion hole. Materials and Manufacturing Processes, 2011, 26(2): 294-303.
DOI: 10.1080/10426910903388390
Google Scholar
[2]
Sasahara, Hiroyuki. The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0. 45%C steel. International Journal of Machine Tools and Manufacture, 2005. 45(2): 131-136.
DOI: 10.1016/j.ijmachtools.2004.08.002
Google Scholar
[3]
Podgornik, B.; Leskovšek, V.; Kovacic, M.; Vizintin, J. . Residual stress field analysis and prediction in nitrided tool steel . Materials and Manufacturing Processes, 2011, 26(9): 1097-1103.
DOI: 10.1080/10426914.2010.525573
Google Scholar
[4]
Kurniawan, Denni; Yusof, Noordin Mohd.; Sharif, Safian. Hard machining of stainless steel using wiper coated carbide: Tool life and surface integrity: Materials and Manufacturing Processes 2010, 25(6): 370-377.
DOI: 10.1080/10426910903179930
Google Scholar
[5]
Zeilmann, Rodrigo P.; Nicola, Gerson L.; Vacaro, Tiago; Teixeira, Cleiton R.; Heiler, Roland. Implications of the reduction of cutting fluid in drilling AISI P20 steel with carbide tools. Advanced Manufacturing Technology, 2011, 2(14): 1-11.
DOI: 10.1007/s00170-011-3401-8
Google Scholar
[6]
Ozcelik, B.; Kuram, E.; Simsek, B.T. . Comparison of dry and wet end milling of AISI 316 stainless steel. Materials and Manufacturing Processes, 2011, 26(8): 1041-1049.
DOI: 10.1080/10426914.2010.515645
Google Scholar
[7]
Ravi, S.; Pradeep Kumar, M. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel. Cryogenics, 2011, 51(9): 509-515.
DOI: 10.1016/j.cryogenics.2011.06.006
Google Scholar