Optimization on Thin Film Bulk Acoustic Resonator (FBAR) by Transmitting Line Method

Article Preview

Abstract:

In this paper, the transmitting line method is applied to analyze the properties of FBAR, and the input impedance equation is obtained, and the series resonance frequency fs and the parallel resonance frequency fp are calculated by this method. Moreover, the elastic effects of the electrode on the effective electromechanical coupling factor, k2eff , and the resonance factor, Qs> , of FBAR are investigated by the transmitting line method. Results indicate that the acoustic impedance ratio of the electrode to the piezo-film dominantly determines the behaviors of the k2eff , the variation of Qs versus the thickness of the electrode crucially depends on the acoustic impedance ratio of electrode to piezoelectric films. The results will be applied in the theoretical optimization of FBAR, which are available to optimize the fabrications of FBARs and similar devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-152

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. D. Larson III, R. Ruby, P. Bradley, Y. Oshmyansky, A BAW antenna duplexer for the 1900 MHz PCS band, in Proc. IEEE Ultrason. Symp., pp.887-890, (1999).

DOI: 10.1109/ultsym.1999.849133

Google Scholar

[2] R. Ruby, P. Bradley, J. D. Larson III, and Y. Oshmyansky, PCS 1900MHz duplexers using thin film bulk acoustic resonators (FBARs), Electron. Lett., 35, pp.794-796, (1999).

DOI: 10.1049/el:19990559

Google Scholar

[3] R. C. Ruby, P. Bradley, Y. Oshmyansky and A. Chien, Thin Film Bulk Wave acoustic resonators for wireless applications, in Proc. IEEE Ultrason. Symp., pp.813-821, (2001).

DOI: 10.1109/ultsym.2001.991846

Google Scholar

[4] K.M. Lakin, J. Belsick, J.F. McDonald, and K.T. McCarron, Improved bulk wave resonator coupling coefficient for wide bandwidth filters, in Proc. IEEE Ultrason. Symp., pp.827-831, (2001).

DOI: 10.1109/ultsym.2001.991848

Google Scholar

[5] H. P. Lobl, M. Klee, C. Metzmacher, W. Brand, R. Milsom, P. Lok and F. V. Straten, Piezoelectric materials for baw resonators and filters, in Proc. IEEE Ultrason. Symp., pp.807-811, (2001).

DOI: 10.1109/ultsym.2001.991845

Google Scholar

[6] R. Lanz, M. A. Dubois and P. Muralt, Solidly mounted baw filters for the 6 to 8 Ghz range based on AlN thin films, in Proc. IEEE Ultrason. Symp., 2001, pp.843-846.

DOI: 10.1109/ultsym.2001.991851

Google Scholar

[7] John D. Larson III, Yury Oshmyansky, Measurement of effective kt2, Q, Rp, Rs vs temperature for Mo/AlN FBAR resonators, in Proc. IEEE Ultrason. Symp. pp.939-943, (2002).

Google Scholar

[8] M. C. Chao, Z. N. Huang, S. Y. Pao, Z. Wang, and C. S. Lam, Modified bvd-equivalent circuit of fbar by taking electrodes into account, in Proc. IEEE Ultrason. Symp., pp.973-976, (2002).

DOI: 10.1109/ultsym.2002.1193558

Google Scholar

[9] Q. Chen and Q. Wang, The effective electro- mechanical coupling coefficient of piezoelectric thin-film resonators, Appl. Phys. Lett., 86, 022904, (2005).

DOI: 10.1063/1.1850615

Google Scholar

[10] Y. Zhang, Z. Wang, and J. D. N. Cheeke, Resonant spectrum method to characterize piezoelectric films in composite resonators, in IEEE Trans., UFFC, 50, pp.321-333, (2003).

DOI: 10.1109/tuffc.2003.1193626

Google Scholar

[11] H. Zhang, S. Y. Zhang and K. Zheng, Parameters characterization of high –overtone bulk acoustic resonators by resonant spectrum method, Ultrosonics, 43, pp.635-642, (2005).

DOI: 10.1016/j.ultras.2005.03.003

Google Scholar