Optical Properties of LaB6: A Computer Aided Simulation

Article Preview

Abstract:

We report ab initio calculations of the structural, elastic and optical properties of the compound LaB6 as a function of pressure. The computation is based on the density functional theory in combination with the generalized gradient approximation functional. The calculated lattice constants and elastic moduli are compared with the theoretical results and a good agreement is found. LaB6 can retain its mechanical stability in the pressure range of 0-20GPa. Besides, the frequency-dependent dielectric function, absorption coefficient and loss function of LaB6 are also obtained. The calculated static dielectric function is 8.8 at 0GPa and 5GPa. The computed results should be testified by experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

292-295

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Zhang, L. Yuan, X. Wang, H. Fan, X. Wang, X. Wu, H. Wang and Y. Qian: J. Solid State Chem. Vol. 181 (2008), p.294.

Google Scholar

[2] V. Craciun and D. Craciun: Appl. Surf. Sci. Vol. 247 (2005), p.384.

Google Scholar

[3] L. W. Swanson, M. A. Gesley and P. R. Davis: Surf. Sci. Vol. 107 (1981), p.263.

Google Scholar

[4] W. Waldhauser, C. Mitterer, J. Laimer and H. Störi: Surf. Coat. Tech. Vol. 74-75 (1995), p.890.

Google Scholar

[5] G. Kontrym-Sznajd, M. Samsel-Czekala, M. Biasini and Y. Kubo: Phys. Rev. B Vol. 70 (2004), p.125103.

Google Scholar

[6] J. M. Lafferty: J. Appl. Phys. Vol. 22 (1951), p.299.

Google Scholar

[7] G. L. Xu, J. D. Chen, Y. Z. Xia, X. F. Liu, Y. F. Liu and X. Z. Zhang: Chin. Phys. Lett. Vol. 26 (2009), p.056201.

Google Scholar

[8] Y. C. Su, L. H. Xiao, Y. C. Fu, P. F. Zhang and P. Peng: Sci. Sin. Phys. Meth. Astron. Vol. 41 (2011), p.58.

Google Scholar

[9] F. M. Hossain, D. P. Riley and G. E. Murch: Phys. Rev. B Vol. 72 (2005), p.235101.

Google Scholar

[10] M. A. Uijttewall, G. A. de Wijs and R. A. de Groot: J. Phys. Chem. B Vol. 110 (2006), p.18459.

Google Scholar

[11] W. Kohn and L. J. Sham: Phys. Rev. B Vol. 140 (1965), p. A1133.

Google Scholar

[12] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[13] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[14] A. E. Baranovskiy, G. E. Grechnev, V. D. Fil, T. V. Ignatova, A. V. Logosha, A. S. Panfilov, I. V. Svechkarev, N. Y. Shitsevalova, V. B. Filippov and O. Eriksson: J. Alloys Compd. Vol. 442 (2007), p.228.

DOI: 10.1016/j.jallcom.2006.07.142

Google Scholar

[15] V. Carciun and D. Craciun: Appl. Surf. Sci. Vol. 247 (2005), p.384.

Google Scholar

[16] N. Korozlu, K. Colakoglu, E. Deligoz, Y. O. Ciftci, B. V. Korzun, A. A. Fadzeyeva, A. V. Mudryi and S. Schorr: Opt. Commun. Vol. 284 (2011), p.1863.

Google Scholar

[17] Y. Z. Zhan, M. J. Pang, H. Z. Wang and Y. Du: Curr. Appl. Phys. Vol. 12 (2012), p.373.

Google Scholar

[18] G. Wang, S. Wu, Z. H. Geng, S. Y. Wang, L. Y. Chen and Y. Jia: Opt. Commun. Vol. 283 (2010), p.4307.

Google Scholar