Dynamically Manipulating Beam with Metallic Nano-Optic Lens Containing Liquid Crystal

Article Preview

Abstract:

A set of metallic nano-optic lens with liquid crystal material embedded in the slits is proposed as a new idea of dynamically manipulating beam. Three kinds of metallic nano-optic lens can achieve the functions of beam deflecting, beam splitting and beam focusing respectively. The deflection angle, splitting angle and focus length can be controlled by external electrical field easily. The three phenomena are based on the principal that changing the external electrical field can control the phase of the waveguide mode in the slits.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

287-291

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Wolff, Nature. 391(1998) 667.

DOI: 10.1038/35570

Google Scholar

[2] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B. 58 (1998) 6779.

Google Scholar

[3] L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, Phys. Rev. Lett. 86 (2001) 1114.

DOI: 10.1103/physrevlett.86.1114

Google Scholar

[4] Y. Takakura, Phys. Rev. Lett. 86 (2001) 5601.

Google Scholar

[5] H. J. Lezec and T. Thio, Opt. Express. 12 (2004) 3629.

Google Scholar

[6] Z. J. Sun and H. K. Kim, Appl. Phy. Lett. 85 (2004) 642.

Google Scholar

[7] H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, H. T. Gao, Opt. Express 13 (2005) 6815.

Google Scholar

[8] Z. J. Sun, Appl. Phy. Lett. 89 (2006) 261119.

Google Scholar

[9] C. J. Min, P. Wang, X. J. Jiao, Y. Deng and H. Ming, Opt. Express 16(2008) 4753-4759.

Google Scholar

[10] M. A. Vincenti, A. D'Orazio, M. Buncick, N. Akozbek, M. J. Bloemer and Michael Scalora, J. Opt. Soc. Am. B. 26 (2009) 301-307.

DOI: 10.1364/josab.26.000301

Google Scholar

[11] T. Xu, C. T. Wang, C. L. Du and X. G. Luo, Opt. Express 16 (2008) 4753-4759.

Google Scholar

[12] L. Verslegers, P. B. Catrysse, Z. F. Yu and S. H. Fan, Appl. Phy. Lett. 79 (2010) 3717.

Google Scholar

[13] L. Verslegers, P. B. Catrysse, Z. F. Yu, E. S. Barnard, M. L. Brongersma, S. H Fan, Nano Lett. 9(2009) 235-238.

DOI: 10.1021/nl802830y

Google Scholar

[14] M. K. Chen, Y. C. Chang, C. E. Yang, Y. H. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards and C. Luo, Microw. Opt. Techn. Let. 52(2010) 979-981.

DOI: 10.1002/mop.25079

Google Scholar

[15] Q. Chen and David R. S. Cumming, Opt. Express 18 (2010) 14788-14793.

Google Scholar

[16] T. J. Kim, T. Thio, T. W. Ebbesen , D. E. Grupp and H. J. Lezec, Opt. Lett. 24 (1999) 256.

Google Scholar

[17] Y. M. Strelniker , Eur. Phys. J. B. 52 (2006) 1.

Google Scholar

[18] C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, T. Tani and M. Hangyo Opt. Expres. 13 (2005) 3921.

DOI: 10.1364/opex.13.003921

Google Scholar

[19] F. Z. Yang, J. R. Sambles, Appl. Phy. Lett. 79 (2001) 3717.

Google Scholar

[20] K. Y. Fong and P. M. Hui, Appl. Phy. Lett. 91 (2007) 171101.

Google Scholar

[21] A. Taflove and S. Hagness. (2000). Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd ed. ).

Google Scholar

[22] J. B. Jubkins and R. W. Ziolkowski, J. Opt. Soc. Am. A. 12 (1995) (1974).

Google Scholar