Facile Synthesis of TiO2 Microspheres with Super High Rate Performance

Article Preview

Abstract:

The development of new electrode materials with high storage capacity is indispensable for improving rechargeable lithium batteries. Herein, high performance TiO2 microspheres have been fabricated by a facile solvothermal method. The obtained TiO2 microspheres were investigated by the measurements of X-ray diffraction pattern, scanning electronic microscopy, and electrochemical tests. As the rates increase from 1C to 20C, the TiO2 composites display high discharge capacities of 414.6 mAh g-1 for the first cycle at 1 C and 244.6 mAh g-1 at 20 C over 100 cycles. CV experiments indicate that there are two peculiar pairs of cathodic/anodic peaks occurred in the range of 1.0-3.0V, which clearly demonstrates that the structure of the TiO2 microspheres here is quite different from the ordinary anatase TiO2. Excellent rate capability and cycle ability are ascribed presumablely to the unique structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 573-574)

Pages:

1198-1202

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.Y. Shin, D. Samuelis, and J. Maier, Adv. Funct. Mater., 21 (2011) p.3464.

Google Scholar

[2] J. H. Liu, J. S. Chen, X. F. Wei, X. W. Lou, X. W. Liu, Adv. Mater. 23 (2011) p.998.

Google Scholar

[3] A. Primo, A. Corma, H. Garcia, Phys. Chem. Chem. Phys. 13 (2011) p.886.

Google Scholar

[4] Pol V.G., Kang S.H., Calderon-Moreno J.M., C. S. Johnson, M. M. Thackeray Autogenic, J. Power Sources 195 (2010) p.5039.

DOI: 10.1016/j.jpowsour.2010.02.072

Google Scholar

[5] F.F. Cao, S. Xin Y.G. Guo and L.J. Wan, Phys. Chem. Chem. Phys. 13(2011) p (2014).

Google Scholar

[6] I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo and H. Murakami, Adv. Mater. 18 (2006) p.69.

Google Scholar

[7] S. K. Das, S. Darmakolla, A. J. Bhattacharyya, J. Mater. Chem. 20 (2010) p.1600.

Google Scholar

[8] J. S. Chen, Z. Y. Wang, X. C. Dong, P. Chen, X. W. Lou, Nanoscale 3(2011) pp.2158-2161.

Google Scholar

[9] J. S. Chen, H. Liu, S. Z. Qiao, X. W. Lou, J. Mater. Chem. 21 (2011) p.5687.

Google Scholar

[10] X. Su, Q.L. Wu, X. Zhan, J. Wu, S.Y. Wei , Z.H. Guo, J. Mater. Sci. 47 (2012) p.2519.

Google Scholar

[11] F. Zhang, Y. Zhang, S.Y. Song, H.J. Zhang, J. Power Sources,  196 (2011)  p.8618.

Google Scholar

[12] S.J. Ding, J.S. Chen, Z.Y. Wang, Y. Cheah, S. Madhavi, Xiao Hu and X.W. Lou,J. Mater. Chem. 21 (2011) p.1677.

Google Scholar

[13] S. Yoon and A. Manthiram,J. Phys. Chem. C 115 (2011) p.9410.

Google Scholar

[14] L.F. Shen, X.G. Zhang, H.S. Li, C.Z. Yuan and G.Z. Cao,J. Phys. Chem. Lett. 2 (2011) p.3096.

Google Scholar

[15] R. Hengerer, Kavan, L.; Krtil, P.; Gra ¨tzel, M. J. Electrochem. Soc. 147 (2000) p.1467.

Google Scholar

[16] L. Kavan, J. Rathousky, M. Gratzel, V. Shklover, A. Zukal, J. Phys. Chem. B 104 (2000) p.12012.

Google Scholar