Evaluation of Elastic Modulus and Hardness of Polylactic Acid-Based Biocomposite by Nano-Indentation

Article Preview

Abstract:

This study focuses on the micromechanical properties of polylactic acid (PLA) reinforced with kenaf fiber (KF) and organo-montmorillonite (OMMT) hybrid biocomposite by using nanoindenter. Nanoindenter is an analytical device that can record small load and depth with high accuracy and precision which can be used to determine the modulus, hardness and other mechanical properties of nanomaterials. The result shows that the optimum properties of the hardness and elastic modulus were dominated by PLA-KF-OMMT hybrid composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

446-449

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Mehdi Jonoobi, H. Jalaluddin Harun, A.P. Mathew and K. Oksman, Mechanical properties of cellulose nanofibre (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology. 70 (2010) 1742-1747.

DOI: 10.1016/j.compscitech.2010.07.005

Google Scholar

[2] H.M. Akil, M.F. Omar, A.A.M., Mazuki, S. Safiee, Z.A.M. Ishak and A. Abu Bakar Kenaf fibre reinforced composites: A review Materials and Design. 32 (2011) 4107-4121.

DOI: 10.1016/j.matdes.2011.04.008

Google Scholar

[3] L.S. Looa and K.K. Gleason, Investigation of polymer and nanoclay orientation distribution in nylon 6/montmorillonite nanocomposite. Polymer 45 (2004) 5933-5939.

DOI: 10.1016/j.polymer.2004.06.025

Google Scholar

[4] E. Sancaktar and J. Kuznicki, Nanocomposite adhesive: Mechanical behaviour with nanoclay. International Journal of Adhesion & Adhesives. 31 (2011) 286-300.

DOI: 10.1016/j.ijadhadh.2010.09.006

Google Scholar

[5] A. Bourmaud and C. Baley, Effects of thermo mechanical processing on the mechanical properties of biocomposite flax fibres evaluated by nanoindentation, polymer degradation and stability. 95 (2010) 1488-1494.

DOI: 10.1016/j.polymdegradstab.2010.06.022

Google Scholar

[6] A.Y. Jee and M. Lee, Comparative analysis on the nanoindentation of polymer using atomic force microscopy. Polymer Testing. 29 (2010) 95-99.

DOI: 10.1016/j.polymertesting.2009.09.009

Google Scholar

[7] E. Wornyo, K. Gall, F. Yang and W. King, Nanoindentation of shape memory polymer networks. Polymer. 48 (2007) 3213-3225.

DOI: 10.1016/j.polymer.2007.03.029

Google Scholar

[8] L. Shen, W.C. Tjiu and T. Liu, Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites, Polymer. 46 (2005) 11969-11977.

DOI: 10.1016/j.polymer.2005.10.006

Google Scholar

[9] W. Gindla and T. Schöberl, The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements, Composites: Part A. 35 (2004) 1345–1349.

DOI: 10.1016/j.compositesa.2004.04.002

Google Scholar

[10] B. Aldousiri, H.N. Dhakal, S. Onuh, Z.Y. Zhang and N. Bennett, Nanoindentation behavior of layered silicate filled spent polyamide-12 Nanocomposites. Polymer Testing. 30 (2011) 688-692.

DOI: 10.1016/j.polymertesting.2011.05.008

Google Scholar

[11] H.H.K. Xu, D.T. Smith, G.E. Schumacher, F.C. Eichmiller and J.M. Antonucci, Indentation modulus and hardness of whisker-reinforced heat-cured dental resin composites. Dental Materials 16 (2000) 248-254.

DOI: 10.1016/s0109-5641(00)00014-2

Google Scholar

[12] Y. Wu, S. Wang, D. Zhou, C. Xing, Y. Zhang, Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation. Bioresource Technology 101 (2010) 2867-2871.

DOI: 10.1016/j.biortech.2009.10.074

Google Scholar

[13] M. Jawaid, H. A. Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers. 86 (2011) 1-18.

DOI: 10.1016/j.carbpol.2011.04.043

Google Scholar