Effect of Bath Formulation and Plating Current Density on Electrodeposited Zinc Anode’s Capacity in Zinc-Air Cell

Article Preview

Abstract:

Zinc anode is electrodeposited from a 2-M zinc chloride electrolytic bath with varying ammonium chloride supporting electrolyte concentrations (0-5 M) and plating current density (0.1 – 0.6 A cm-2). The total charge quantity supplied during electrodeposition is fixed at 150 mAh. Alkaline zinc-air cell is fabricated using the electrodeposited zinc anode and characterized according to its discharge capacity at constant load current of 20 mA. The effect of various qualities of zinc electrodeposits on the cell discharge performance is discussed. It is found that zinc electrodeposits prepared from electrolytic bath of 5-M ammonium chloride and 0.5 A cm-2 plating current density produced zinc-air cell with the highest output energy i.e. 24 mWh. We observe that the influence of plating current density is more prominent than the plating bath formulation on the zinc anode performance in the cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

484-487

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.D. Varghese, Electroplating and Other Surface Treatments: A Practical Guide, Tata McGraw – Hill Inc., New Delhi, (1993).

Google Scholar

[2] A.J. Bard, R.F. Larry, Electrochemical Methods: Fundamentals and Applications, second ed., Wiley, (2000).

Google Scholar

[3] M. Paunovic, M. Schlesinger, Fundamentals of Electrochemical Deposition, Wiley–Interscience Publication, New York, (1998).

Google Scholar

[4] V.A. Paramonov, V.V. Levenkov, Production of automobile sheet with coatings, Metallurgist 48 (2004) 473–477.

DOI: 10.1007/s11015-005-0008-z

Google Scholar

[5] C.Y. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710-712.

DOI: 10.1038/359710a0

Google Scholar

[6] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.D. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114 (1992).

DOI: 10.1021/ja00053a020

Google Scholar

[7] H. Saputra, R. Othman, A.G. E. Sutjipto, R. Muhida, MCM-41 as a New Separator Material for Electrochemical Cell: Application in Zinc-Air System, J. Mem. Sci. 367 (2011) 152-57.

DOI: 10.1016/j.memsci.2010.10.061

Google Scholar

[8] H. Saputra, R. Othman, M. H. Ani, A. G. E. Sutjipto, R. Muhida, High energy density zinc–air microbattery utilising inorganic MCM-41 membrane, Mater. Res. Innov. 15 (2011) s114-s117.

DOI: 10.1179/143307511x13031890748326

Google Scholar

[9] C. Chakkaravarthy, A.K. Abdul Waheed, H.V.K. Udupa, Zinc-air alkaline batteries – A Review, J. Power Sources 6 (1986) 203-228.

DOI: 10.1016/0378-7753(81)80027-4

Google Scholar

[10] A.L. Nor Hairin, Electrodeposition of Zinc for Application in Zinc-Air Cell, MSc. Thesis, Faculty of Engineering, International Islamic University Malaysia, (2012).

Google Scholar