[1]
A. S Singha, V.K. Thakur, Mechanical Properties of Natural Fibre Reinforced Polymer Composites, Bull. Mater. Sci. 31 (2008) 791–799.
DOI: 10.1007/s12034-008-0126-x
Google Scholar
[2]
J. Pflug, et al., New Strategies for Optimal Natural Fibre Reinforced Sandwich Parts, Katholieke Universiteit Leuven, (2004).
Google Scholar
[3]
W. D. Brouwer, Natural Fibre Composites in Structural Components: Alternative Applications for Sisal, Delft University, The Netherlands, (2010).
Google Scholar
[4]
Loken, H. Y., Bonding of Sandwich Structures, E.I. DuPont de Nemours Co., Inc., Advanced Fibers System, (2009).
Google Scholar
[5]
M. Juwaid, and A. Khalil. Effect of Layering Pattern on the Dynamic Mechanical Properties and Thermal Degradation of Oil Palm – Jute Fibers Reinforced Epoxy Hybrid Composite, BioResources Universiti Sains Malaysia, 6 (2011) 2309-2322.
Google Scholar
[6]
Y. Cao, S. Sakamoto, K. Goda, Effects of Heat and Alkali Treatments on Mechanical Properties of Kenaf Fibers, Yamaguchi University, Japan, (2007).
Google Scholar
[7]
H.P.S. Abdul Khalil, N. L. Suraya, Anhydride Modification of Cultivated Kenaf Bast Fibers: Morphological, Spectroscopic, and Thermal Studies, University Sains Malaysia, Malaysia (2011).
Google Scholar
[8]
M. Jonoobi, J. Harun, et. al., Characteristics of Nanofibers Extracted from Kenaf Core, University Putra Malaysia, Malaysia, (2010).
Google Scholar
[9]
M. Jonoobi, J. Harun, et. al., Chemical Composition, Crystallinity, and Thermal Degradation of Bleached and Unbleached Kenaf Bast (Hibiscus Cannabinus) Pulp and Nanofibers, University Putra Malaysia, Malaysia, (2009).
Google Scholar
[10]
V.K. Thakur, A.S. Singha, Natural Fibres-Based Polymers: Part I—Mechanical Analysis of Pine Needles Reinforced Biocomposites, Bulletin Material Science, Indian Academy of Sciences, 33(2010) 257–264.
DOI: 10.1007/s12034-010-0040-x
Google Scholar