Fatigue Behavior of Swept Spot Friction Welds in Lap-Shear Specimens of Alclad 2024-T3 Aluminum Sheets

Abstract:

Article Preview

Failure modes of swept spot friction welds in lap-shear specimens of alclad 2024-T3 aluminum sheets are first investigated based on experimental observations. Optical and scanning electron micrographs of the welds before and after failure under quasi-static and cyclic loading conditions are examined. Experimental results show that the failure modes of the welds under quasi-static and cyclic loading conditions are quite different. Failure modes of swept spot friction welds depend considerably on the weld geometry, microstructure, and load amplitude. A fatigue crack growth model based on the paths of the dominant kinked fatigue cracks is developed to estimate the fatigue lives of the spot friction welds. The global and local stress intensity factors for finite kinked cracks, the stress intensity factors for finite transverse cracks, and the Paris law for fatigue crack propagation are used. The fatigue life estimations agree well with the experimental results.

Info:

Periodical:

Edited by:

Zone-Ching Lin, You-Min Huang, Chao-Chang Arthur Chen and Liang-Kuang Chen

Pages:

387-397

Citation:

Z. M. Su et al., "Fatigue Behavior of Swept Spot Friction Welds in Lap-Shear Specimens of Alclad 2024-T3 Aluminum Sheets", Advanced Materials Research, Vol. 579, pp. 387-397, 2012

Online since:

October 2012

Export:

Price:

$38.00

[1] G. Buffa, L. Fratini , M. Piacentini, On the Influence of Tool Path in Friction Stir Spot Welding of Aluminum Alloys, Journal of Materials Processing Technology, 208 (2008) 309-317.

DOI: https://doi.org/10.1016/j.jmatprotec.2008.01.001

[2] B. Tweedy, C. Widener, J. Merry, J. Brown, D. Burford, Factors Affecting the Properties of Swept Friction Stir Welds, SAE Technical Paper, Society of Automotive Engineers, Detroit, (2008) 14-17.

DOI: https://doi.org/10.4271/2008-01-1135

[3] J. Brown, C. Widener, G. Moore, K. Poston, D. Burford, Evaluation of Swept Friction Stir Spot Welding in Al 2219-T6, TMS 2009 Annual Meeting, California, (2009) 215-223.

[4] J. Brown, C. Widener, D. Burford, W. Horn, G. Talia, B. Tweedy, Corrosion and Fatigue Evaluation of Sept Friction Stir Spot Welding through Sealants and Surface Treatments, TMS 2009 Annual Meeting, California, (2009) 273-282.

[5] S. A. Gean, J. C. Westgate, J. C. Kucza, J. C. Ehrstorm, Static and Fatigue Behavior of Spot-Welded 5182-0 Aluminum Alloy Sheet, Welding Journal, 78 (1999) 80-86.

[6] J. A. Newman, N. E. Dowling, A Crack Growth Approach to Life Prediction of Spot-Welded Lap Joints, Fatigue Fracture Engineering Mater Structure (1998) 1123-32.

[7] S. H. Lin, J. Pan, P. Wung, J. Chiang, A Fatigue Crack Growth Model for Spot Welds in Various Types of Specimens under Cyclic Loading Conditions, International Journal of Fatigue (2006) 792-803.

DOI: https://doi.org/10.1016/j.ijfatigue.2005.08.003

[8] P. C. Lin, J. Pan, T. Pan, Failure Modes and Fatigue Life Estimations of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets, Part 1: Welds Made by A Concave Tool, International Journal of Fatigue (2008) 74-89.

DOI: https://doi.org/10.1016/j.ijfatigue.2007.02.016

[9] P. C. Lin, J. Pan, T. Pan, Failure Modes and Fatigue Life Estimations of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets, Part 2: Welds Made by a Flat Tool, International Journal of Fatigue (2008) 90-105.

DOI: https://doi.org/10.1016/j.ijfatigue.2007.02.017

[10] N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 2nd ed., Upper Saddle River, New Jersey, (1998).

[11] P. C. Lin, D. A. Wang, J. Pan, Mode I Stress Intensity Factor Solutions for Spot Welds in Lap-Shear Specimens, International Journal Solids Structure (2007) 1013-37.

DOI: https://doi.org/10.4271/2006-01-0535

[12] S. Zhang, Stress Intensities at Spot Welds, International Journal Fracture (1997) 167-85.

[13] D. A. Wang, S. H. Lin, J. Pan, Stress Intensity Factors for Spot Welds and Associated Kinked Cracks in Cup Specimens, International Journal of Fatigue (2005) 81-98.

DOI: https://doi.org/10.1016/j.ijfatigue.2004.08.008

[14] H. Tada, P. C. Paris, G. R. Irwin, The Stress Analysis of Crack Handbook, 2nd. ed., Paris Productions Inc., 226 Woodbourne Dr., St. Louis, MO 63105 , (1985).

[15] P. C. Lin, Z. M. Su, R. Y. He, Z. M. Lin, Failure Modes and Fatigue Life Estimations of Spot Friction Welds in Cross-Tension Specimens of Aluminum 6061-T6 sheets, International Journal of Fatigue 38 (2012) 25-35.

DOI: https://doi.org/10.1016/j.ijfatigue.2011.11.003

[16] P. R. Abelkis, J. M. Potter, Service Fatigue Loads Monitoring, Simulation, and Analysis: A Symposium, ASTM International (1979).

DOI: https://doi.org/10.1520/stp671-eb