Evaluation of Microstructure and Glass Transition Temperature of Al-Cu-Cr-Fe-Ni High-Entropy Alloy by Molecular Dynamics Simulation

Article Preview

Abstract:

In this study, the microstructure and glass transition temperature (Tg) of five elements (Al-Cu-Cr-Fe-Ni) high-entropy alloy was evaluated under different Al content by molecular dyItalic textnamics (MD) simulations. The ensemble and COMPASS potential were used. Firstly, the Al-Cu-Cr-Fe-Ni high-entropy alloys were melted at high temperature and were cooled with a high quenching rate further. The radial distribution function (RDF),Wendt-Abraham parameter and X-ray diffractometer (XRD) were used to analyze the change on the microstructure and glass transition temperature (Tg) of Al-Cu-Cr-Fe-Ni high-entropy alloys. Simulation results show that the micro-structure of different aluminum content of AlxCuCrFeNi alloy after fast quenching are all amorphous state. When the aluminum content decreased, the amorphous state are more obvious and the glass transition temperature decreases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

398-406

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Y. Chen, U. T. Hong, H. C. Shih, J. W. Yeh, T. Duval, Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel, Corrosion Science, 47 (2005) 2679–2699.

DOI: 10.1016/j.corsci.2004.09.026

Google Scholar

[2] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured High-entropy Alloys with Multi-Principal Elements-Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials, 6 (2004).

DOI: 10.1002/adem.200300567

Google Scholar

[3] A. Inoue, T. Zhang, T. Masumoto, Glass-forming ability of alloys, Journal of Non-Crystalline Solids, 156 (1993) 473-480.

DOI: 10.1016/0022-3093(93)90003-g

Google Scholar

[4] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 36A (2005).

DOI: 10.1007/s11661-005-0283-0

Google Scholar

[5] Y. P. Wang, B. S. Li, M. X. Ren, C. Yang, H. Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Advanced Engineering Materials, 491 (2008) 154-158.

DOI: 10.1016/j.msea.2008.01.064

Google Scholar

[6] K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, H. Wang, Y. C. Wang, Q. J. Zhang, J. Shi, Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Materials Science and Engineering, 508 (2009) 214-219.

DOI: 10.1016/j.msea.2008.12.053

Google Scholar

[7] K. B. Zhang, Z. Y. Fu , J. Y. Zhang, W. M. Wang, S. W. Lee, K. Niihara, Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Materials Science and Engineering, 20 (2011) 012009.

DOI: 10.1088/1757-899x/20/1/012009

Google Scholar

[8] J. C. Huang, S. S. Chang, H. S. Chou, Y. C. Liao, Tribological Behavior of High Entropy Alloy Thin Film Using Molecular Dynamics Simulation, International Thin Films Conference (TACT 2009) , Taipei, Taiwan (2009) p.269.

Google Scholar

[9] L. Qi, H. F. Zhang, Z. Q. Hu, Molecular dynamic simulation of glass formation in binary liquid metal: Cu-Ag using EAM, Intermetallics, 12 (2004) 1191-1195.

DOI: 10.1016/j.intermet.2004.04.003

Google Scholar

[10] H. H. Kart, M. Uludogan, T. Cagin, M. Tomak, Simulation of Crystallization and Glass Formation of Pd-Ag metal alloys, Journal of Non-Crystalline Solids, 342 (2004) 6-11.

DOI: 10.1016/j.jnoncrysol.2004.07.033

Google Scholar

[11] N. P. Bailey, J. Schiotz, K. W. Jacobsen, Simulation of Cu-Mg metallic glass: Thermodynamics and structure. Physical Review B, 69 (2004) 144205.

DOI: 10.1103/physrevb.96.059904

Google Scholar

[12] S. Ozdemir Kart, M. Tomak, M. Uludogan, T. Cagin, Molecular Dynamics Studies on Glass Formation of Pd-Ni Alloys by Rapid Quenching, Turkish Journal of Physics, 30 (2006) 319-327.

Google Scholar

[13] J. C. Huang, C. Y. Chiu, The Study of Single-walled Nanotube Reinforced Epoxy Composites by Molecular Dynamics, Polymers & Polymer Composites, 19 (2011) 377-382.

DOI: 10.1177/0967391111019004-519

Google Scholar

[14] J. M. Haile, Molecular Dynamics Simlation: Elementary Methods, John Wiley & Sons, Inc., New York, (1992).

Google Scholar

[15] H. R. Wendt and F. F. Abraham, Empirical Criterion for the Glass Transition Region Based on Monte Carlo Simulations, Phys. Rev. Lett., 41 (1978) 1244-1246.

DOI: 10.1103/physrevlett.41.1244

Google Scholar