Evaluation of Microstructure and Glass Transition Temperature of Al-Cu-Cr-Fe-Ni High-Entropy Alloy by Molecular Dynamics Simulation

Abstract:

Article Preview

In this study, the microstructure and glass transition temperature (Tg) of five elements (Al-Cu-Cr-Fe-Ni) high-entropy alloy was evaluated under different Al content by molecular dyItalic textnamics (MD) simulations. The ensemble and COMPASS potential were used. Firstly, the Al-Cu-Cr-Fe-Ni high-entropy alloys were melted at high temperature and were cooled with a high quenching rate further. The radial distribution function (RDF),Wendt-Abraham parameter and X-ray diffractometer (XRD) were used to analyze the change on the microstructure and glass transition temperature (Tg) of Al-Cu-Cr-Fe-Ni high-entropy alloys. Simulation results show that the micro-structure of different aluminum content of AlxCuCrFeNi alloy after fast quenching are all amorphous state. When the aluminum content decreased, the amorphous state are more obvious and the glass transition temperature decreases.

Info:

Periodical:

Edited by:

Zone-Ching Lin, You-Min Huang, Chao-Chang Arthur Chen and Liang-Kuang Chen

Pages:

398-406

Citation:

J. C. Huang et al., "Evaluation of Microstructure and Glass Transition Temperature of Al-Cu-Cr-Fe-Ni High-Entropy Alloy by Molecular Dynamics Simulation", Advanced Materials Research, Vol. 579, pp. 398-406, 2012

Online since:

October 2012

Export:

Price:

$38.00

[1] Y. Y. Chen, U. T. Hong, H. C. Shih, J. W. Yeh, T. Duval, Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel, Corrosion Science, 47 (2005) 2679–2699.

DOI: https://doi.org/10.1016/j.corsci.2004.09.026

[2] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured High-entropy Alloys with Multi-Principal Elements-Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials, 6 (2004).

DOI: https://doi.org/10.1002/adem.200300567

[3] A. Inoue, T. Zhang, T. Masumoto, Glass-forming ability of alloys, Journal of Non-Crystalline Solids, 156 (1993) 473-480.

DOI: https://doi.org/10.1016/0022-3093(93)90003-g

[4] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 36A (2005).

DOI: https://doi.org/10.1007/s11661-005-0283-0

[5] Y. P. Wang, B. S. Li, M. X. Ren, C. Yang, H. Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Advanced Engineering Materials, 491 (2008) 154-158.

DOI: https://doi.org/10.1016/j.msea.2008.01.064

[6] K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, H. Wang, Y. C. Wang, Q. J. Zhang, J. Shi, Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Materials Science and Engineering, 508 (2009) 214-219.

DOI: https://doi.org/10.1016/j.msea.2008.12.053

[7] K. B. Zhang, Z. Y. Fu , J. Y. Zhang, W. M. Wang, S. W. Lee, K. Niihara, Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Materials Science and Engineering, 20 (2011) 012009.

[8] J. C. Huang, S. S. Chang, H. S. Chou, Y. C. Liao, Tribological Behavior of High Entropy Alloy Thin Film Using Molecular Dynamics Simulation, International Thin Films Conference (TACT 2009) , Taipei, Taiwan (2009) p.269.

[9] L. Qi, H. F. Zhang, Z. Q. Hu, Molecular dynamic simulation of glass formation in binary liquid metal: Cu-Ag using EAM, Intermetallics, 12 (2004) 1191-1195.

DOI: https://doi.org/10.1016/j.intermet.2004.04.003

[10] H. H. Kart, M. Uludogan, T. Cagin, M. Tomak, Simulation of Crystallization and Glass Formation of Pd-Ag metal alloys, Journal of Non-Crystalline Solids, 342 (2004) 6-11.

DOI: https://doi.org/10.1016/j.jnoncrysol.2004.07.033

[11] N. P. Bailey, J. Schiotz, K. W. Jacobsen, Simulation of Cu-Mg metallic glass: Thermodynamics and structure. Physical Review B, 69 (2004) 144205.

DOI: https://doi.org/10.1103/physrevb.96.059904

[12] S. Ozdemir Kart, M. Tomak, M. Uludogan, T. Cagin, Molecular Dynamics Studies on Glass Formation of Pd-Ni Alloys by Rapid Quenching, Turkish Journal of Physics, 30 (2006) 319-327.

[13] J. C. Huang, C. Y. Chiu, The Study of Single-walled Nanotube Reinforced Epoxy Composites by Molecular Dynamics, Polymers & Polymer Composites, 19 (2011) 377-382.

[14] J. M. Haile, Molecular Dynamics Simlation: Elementary Methods, John Wiley & Sons, Inc., New York, (1992).

[15] H. R. Wendt and F. F. Abraham, Empirical Criterion for the Glass Transition Region Based on Monte Carlo Simulations, Phys. Rev. Lett., 41 (1978) 1244-1246.

DOI: https://doi.org/10.1103/physrevlett.41.1244