[1]
Y. Y. Chen, U. T. Hong, H. C. Shih, J. W. Yeh, T. Duval, Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel, Corrosion Science, 47 (2005) 2679–2699.
DOI: 10.1016/j.corsci.2004.09.026
Google Scholar
[2]
J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured High-entropy Alloys with Multi-Principal Elements-Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials, 6 (2004).
DOI: 10.1002/adem.200300567
Google Scholar
[3]
A. Inoue, T. Zhang, T. Masumoto, Glass-forming ability of alloys, Journal of Non-Crystalline Solids, 156 (1993) 473-480.
DOI: 10.1016/0022-3093(93)90003-g
Google Scholar
[4]
C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 36A (2005).
DOI: 10.1007/s11661-005-0283-0
Google Scholar
[5]
Y. P. Wang, B. S. Li, M. X. Ren, C. Yang, H. Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Advanced Engineering Materials, 491 (2008) 154-158.
DOI: 10.1016/j.msea.2008.01.064
Google Scholar
[6]
K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, H. Wang, Y. C. Wang, Q. J. Zhang, J. Shi, Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Materials Science and Engineering, 508 (2009) 214-219.
DOI: 10.1016/j.msea.2008.12.053
Google Scholar
[7]
K. B. Zhang, Z. Y. Fu , J. Y. Zhang, W. M. Wang, S. W. Lee, K. Niihara, Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Materials Science and Engineering, 20 (2011) 012009.
DOI: 10.1088/1757-899x/20/1/012009
Google Scholar
[8]
J. C. Huang, S. S. Chang, H. S. Chou, Y. C. Liao, Tribological Behavior of High Entropy Alloy Thin Film Using Molecular Dynamics Simulation, International Thin Films Conference (TACT 2009) , Taipei, Taiwan (2009) p.269.
Google Scholar
[9]
L. Qi, H. F. Zhang, Z. Q. Hu, Molecular dynamic simulation of glass formation in binary liquid metal: Cu-Ag using EAM, Intermetallics, 12 (2004) 1191-1195.
DOI: 10.1016/j.intermet.2004.04.003
Google Scholar
[10]
H. H. Kart, M. Uludogan, T. Cagin, M. Tomak, Simulation of Crystallization and Glass Formation of Pd-Ag metal alloys, Journal of Non-Crystalline Solids, 342 (2004) 6-11.
DOI: 10.1016/j.jnoncrysol.2004.07.033
Google Scholar
[11]
N. P. Bailey, J. Schiotz, K. W. Jacobsen, Simulation of Cu-Mg metallic glass: Thermodynamics and structure. Physical Review B, 69 (2004) 144205.
DOI: 10.1103/physrevb.96.059904
Google Scholar
[12]
S. Ozdemir Kart, M. Tomak, M. Uludogan, T. Cagin, Molecular Dynamics Studies on Glass Formation of Pd-Ni Alloys by Rapid Quenching, Turkish Journal of Physics, 30 (2006) 319-327.
Google Scholar
[13]
J. C. Huang, C. Y. Chiu, The Study of Single-walled Nanotube Reinforced Epoxy Composites by Molecular Dynamics, Polymers & Polymer Composites, 19 (2011) 377-382.
DOI: 10.1177/0967391111019004-519
Google Scholar
[14]
J. M. Haile, Molecular Dynamics Simlation: Elementary Methods, John Wiley & Sons, Inc., New York, (1992).
Google Scholar
[15]
H. R. Wendt and F. F. Abraham, Empirical Criterion for the Glass Transition Region Based on Monte Carlo Simulations, Phys. Rev. Lett., 41 (1978) 1244-1246.
DOI: 10.1103/physrevlett.41.1244
Google Scholar