A Rapid and Low Cost Manufacturing for Polymeric Microfluidic Devices

Article Preview

Abstract:

A rapid manufacturing process was demonstrated to fabricate a microfluidic device to amplify specific DNA fragments in less than 8 hours. Microfluidics was derived from microelectromechanical system (MEMS) with lithography technique on the substrates of silicon and glass, which made the microfluidic product have a higher fabrication cost and laborious fabrication steps. This rapid approach only requires three steps for a PDMS microfluidic device: metal mold insert manufacturing, PDMS casting, and glass bonding. Each step did not require complicated equipments or procedures, and make this approach very attractive in rapid prototyping and experimental optimization with microfluidic devices. In this work, a brass mold insert was manufactured by a micromilling machine, followed by the standard PDMS casting and glass bonding to fabricate a microfluidic device. Polymerase chain reaction (PCR) to amplify specific DNA fragments, a typical microfluidic example, was successfully realized on this PDMS microfluidic device. This rapid and low cost (compared to conventional lithography) fabrication approach can provide researchers a lower entry to polymeric lab-on-a-chip either on PDMS or thermoplastic substrate for various applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

348-356

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.C. Terry, J.H. Jerman, J.B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Trans. Electron Devices 26 (1979) 1880-1886.

DOI: 10.1109/t-ed.1979.19791

Google Scholar

[2] A.W. Martinez, S.T. Phillips, Wiley B.J. Wiley, M. Gupta, Whitesides G.M. Whitesides, 2008. FLASH: a rapid method for prototyping paper-based microfluidic devices, Lab on a chip, 8 (2008) 2146-2150.

DOI: 10.1039/b811135a

Google Scholar

[3] W. Ehrfeld, H. lehr, F. Michael, A. Wolf, H. -P. Gruber, A. Berthholds, Microelectro discharge machining as a technology in micromachining, Proceedings of SPIE- The International Society for Optical Engineering, 2879 (1996) 332-337.

DOI: 10.1117/12.251221

Google Scholar

[4] A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, V. Saile, L. Gietzelt, W. Hoffmann, P.C. Hauser, J. Tanyanyiwa, A. Gerlach, N. Gottschlich, G. Knebel, Microfluidic lab-on-a-chip systems based on polymers-fabrication and application, 101 (2004).

DOI: 10.1016/j.cej.2004.01.016

Google Scholar

[5] T.D. Boone, Z.H. Fan, H.H. Hooper, A.J. Ricco, H. Tan, S.J. Williams, Plastic advances microfluidic devices, 74 (2002) 78A-86A.

Google Scholar

[6] S.A. Soper, S.M. Ford, S. Qi, R.L. Mccarley, K. Kelly, M.C. Murphy, Polymeric microelectromechanical systems, 72 (2000) 643A-651A.

Google Scholar

[7] B.H. You, P.C. Chen, D.S. Park, S. Park, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, Passive micro-assembly of modular, hot embossed, polymer microfluidic devices using exact constraint design, 19 (2009) 125025.

DOI: 10.1088/0960-1317/19/12/125025

Google Scholar

[8] M.L. Hupert, W.J. Guy, S.D. Llopis, C. Situma, S. Rani, D.E. Nikitopoulos, S.A. Soper, High precision micromilling for low cost fabrication of metal mold masters, Proceedings of SPIE- The International Society for Optical Engineering, 6112 (2005).

DOI: 10.1117/12.647135

Google Scholar

[9] M.L. Hupert, W.J. Guy, S.D. Llopis, C. Situma, S. Rani, D.E. Nikitopoulos, S.A. Soper, Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices, Microfluid Nanofluid, 3 (2007) 1-11.

DOI: 10.1007/s10404-006-0091-x

Google Scholar

[10] D.S. Zhao, B. Roy, M.T. McCormick, W.G. Kuhr, S.A. Brazill, Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining, Lab Chip, 3 (2003) 93-99.

DOI: 10.1039/b300577a

Google Scholar

[11] J.S. Mecomber, A.M. Stalcup, D. Hurd, H. B. Halsall, W. R. Heineman, C. J. Seliskar, K. R. Wehmeyer, P. A. Limbach, Analytical Performance of Polymer-Based Microfluidic Devices Fabricated By Computer Numerical Controlled Machining, Anal. Chem, 78 (2006).

DOI: 10.1021/ac051523y

Google Scholar

[12] J. S. Mecomber, D. Hurdb, P. A. Limbach, Enhanced machining of micron-scale features in microchip molding masters by CNC milling, International Journal of Machine Tools & Manufacture 45 (2005) 1542–1550.

DOI: 10.1016/j.ijmachtools.2005.01.016

Google Scholar

[13] K. B. Mullis; Faloona, F. A Faloona, Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction, Methods Enzymol. 155 (1987) 335–350.

DOI: 10.1016/0076-6879(87)55023-6

Google Scholar

[14] P. J. Obeid, T. K. Christopoulos, H J Crabtree, C. J. Backhouse, Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection, Anal. Chem., 75 (2003).

DOI: 10.1021/ac0260239

Google Scholar

[15] D. J. Sadler, R. Changrani, P. Roberts, C. F. Chou, F. Zenhausern, Thermal management of Bio-MEMS: Temperature control for ceramic-based PCR and DNA detection devices, IEEE Tr Comp Pkging Tech, 26 (2003) 309-316.

DOI: 10.1109/tcapt.2003.815093

Google Scholar

[16] H. Nagai, Y. Murakami, Y. Morita, K. Yokoyama, E. Tamiya, Development of a microchamber array for picoliter PCR, Anal. Chem., 73 (2001) 1043-1047.

DOI: 10.1021/ac000648u

Google Scholar

[17] M. Hashimoto, P.C. Chen, M.W. Mitchell, D.E. Nikitopoulos, S.A. Soper, M. C Murphy, Rapid PCR in a continuous flow device, Lab Chip 4 (2004) 638-645.

DOI: 10.1039/b406860b

Google Scholar

[18] P. -C. Chen, D. E. Nikitopoulos, S. A. Soper, M. C. Murphy, Temperature distribution effects on micro-CFPCR performance, Biomed. Microdevices, 10 (2008) 141-152.

DOI: 10.1007/s10544-007-9119-6

Google Scholar

[19] P. -C Chen, D.S. Park, B.H. You, N. Kim, T. Park, S.A. Soper, D.E. Nikitopoulos, M.C. Murphy, . Titer plate formatted continuous flow thermal reactors: design and performance of a nanoliter reactor, Sensors and Actuators B: Chemical, 149 (2010).

DOI: 10.1016/j.snb.2010.05.068

Google Scholar

[20] A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, V. Saile, L. Eichhorn, T. Gietzelt, W. Hoffmann, PC. Hauser, J. Tanyanyiwa, A. Gerlach, N. Gottschlich, G. Knebel, Microfluidic lab-on-a-chip systems based on polymers—fabrication and application, Chem Eng J, 101(1–3) (2004).

DOI: 10.1016/j.cej.2004.01.016

Google Scholar

[21] T. Schaller, L. Bohn, J. Mayer, K. Schubert, (1999) Microstructure grooves with a width of less than 50 um cut with ground hard metal micro end mills, Precis Eng, 23 (1999) 229–235.

DOI: 10.1016/s0141-6359(99)00011-2

Google Scholar