[1]
Balram Suman, Sirshendu De, Sunando DasGupta, Transient modeling of micro-grooved heat pipe, International Journal of Heat and Mass Transfer 48 (2005) 1633-1646.
DOI: 10.1016/j.ijheatmasstransfer.2004.11.004
Google Scholar
[2]
T.P. Cotter, Principles and prospects of micro-heat pipes, in: Proceedings of the 5th International Heat Pipe Conference, Tsukuba, Japan (1984) 328–332.
Google Scholar
[3]
S. Gokhale, J.L. Plawsky, P.C. Wayner Jr., S. DasGupta, Experimental measurement of pressure gradient and fluid flow in a small spreading drop during condensation, Phys. Fluids 16 (6) (2004) 1942–(1955).
DOI: 10.1063/1.1718991
Google Scholar
[4]
P.C. Wayner Jr., The effect of interfacial mass transport on flow in thin liquid films, Colloids Surf. 52 (1991) 71–84.
DOI: 10.1016/0166-6622(91)80006-a
Google Scholar
[5]
L. Zheng, J.L. Plawsky, P.C. Wayner Jr., S. Das Gupta, Stabilityand oscillations in an evaporating corner meniscus, J. Heat Transfer 126 (2004) 169–178.
DOI: 10.1115/1.1652046
Google Scholar
[6]
M. Dubois, B. Mullender, W. Supper, Space qualification of high capacity grooved heat pipes, Society of Automotive Engineers, SAE Paper, 972453, Warrendale, PA, (1997).
DOI: 10.4271/972453
Google Scholar
[7]
B. Suman, A steady state model and maximum heat transport capacity of an electrohydrodynamically augmented micro-grooved heat pipe, Int. J. Heat Mass Transfer 49 (2006) 3957–3967.
DOI: 10.1016/j.ijheatmasstransfer.2006.04.011
Google Scholar
[8]
H.B. Ma, G.P. Peterson, X.J. Lu, The influence of vapor–liquid interaction on the liquid pressure drop in triangle microgrooves, Int. J. Heat Mass Transfer 37 (1994) 2211–2219.
DOI: 10.1016/0017-9310(94)90364-6
Google Scholar
[9]
S.W. Chen, J.C. Hsieh, C.T. Chou, H.H. Lin, S.C. Shen, M.J. Tsai, Experimental investigation and visualization on capillary and boiling limits of micro-grooves made by different processes, Sensors Actuators A Phys. 139 (2007) 78–87.
DOI: 10.1016/j.sna.2007.03.009
Google Scholar
[10]
D. Khrustalev, A. Faghri, Coupled liquid and vapor flow in miniature passages with microgrooves, J. Heat Transfer 121 (1999) 729–733.
DOI: 10.1115/1.2826042
Google Scholar
[11]
S.K. Thomas, R.C. Lykin, K.L. Yerkes, Full developed laminar flow in trapezoidal grooves with shear stress at the liquid–vapor interface, Int. J. Heat Mass Transfer 44 (2001) 3397–3412.
DOI: 10.1016/s0017-9310(01)00007-2
Google Scholar
[12]
S.J. Kim, J.K. Seo, K.H. Do, Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure, Int. J. Heat Mass Transfer 46 (2003) 2051–(2063).
DOI: 10.1016/s0017-9310(02)00504-5
Google Scholar
[13]
J.S. Suh, S.P. Young, Analysis of thermal performance in a micro flat heat pipe with axially trapezoidal groove, Tamkang, J. Sci. Eng. 6 (4) (2003) 201–206.
Google Scholar