[1]
Z. You, E. J. Kostelich, J. A. Yorke, Calculating stable and unstable manifolds, Int. J. Bifurc. Chaos Appl. Sci. Eng., 1(1991), p.605.
DOI: 10.1142/s0218127491000440
Google Scholar
[2]
T. S. Parker, L. O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer, Berlin, (1989).
Google Scholar
[3]
D. Hobson, An efficient method for computing invariant manifolds, J. Comput. Phys., 104(1991), p.14.
Google Scholar
[4]
]B. Krauskopf, H. M. Osinga, Growing unstable manifolds of planar maps, 1517, 1997, http: /www. ima. umn. edu/preprints/OCT97/1517. ps. gz.
Google Scholar
[5]
J. P. England, B. Krauskopf, and H. M. Osinga, Computing One-Dimensional Stable Manifolds and Stable Sets of Planar Maps without the Inverse, SIAM J. Appl. Dyn. Syst., 3(2004), p.161.
DOI: 10.1137/030600131
Google Scholar
[6]
M. Dellnitz, A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math., 75(1997), p.293.
DOI: 10.1007/s002110050240
Google Scholar
[7]
D. Fundinger, Toward the Calculation of Higher-Dimensional Stable Manifolds and Stable Sets for Noninvertible and Piecewise-Smooth Maps. J Nonlinear Sci, 2008, 18, p.391.
DOI: 10.1007/s00332-007-9016-4
Google Scholar
[8]
B. Krauskopf, H.M. Osinga, Globalizing two-dimensional unstable manifolds of maps. Int. J. Bifurc. Chaos Appl. Sci. Engrg., 1998, 8(3): p.483.
DOI: 10.1142/s0218127498000310
Google Scholar
[9]
B. Krauskopf and H.M. Osinga, Two-dimensional global manifolds of vector fields. Chaos, 1999, 9(3): p.768.
DOI: 10.1063/1.166450
Google Scholar
[10]
J. Palis, W. D. Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York, (1982).
Google Scholar
[11]
S. V. Gonchenko, I. I. Ovsyannikov, C. Simo, D. Turaev, Three-dimensional Hénon-like maps and wild Lorenz-like attractors. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2005, 15(11): p.3493.
DOI: 10.1142/s0218127405014180
Google Scholar