Construct 2D Stable and Unstable Manifolds of Nonlinear Maps

Article Preview

Abstract:

The procedure resolves the insertion of new mesh point, the searching of the image (or pre-image) and computation of the 1D sub-manifolds following the new mesh point tactfully, it does not require the 1D sub-manifolds to be computed from the initial circle and avoids the assembling of mesh points. The performance of the algorithm is demonstrated with hyper chaotic 3D Hénon map and Lorenz system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

432-436

Citation:

Online since:

October 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. You, E. J. Kostelich, J. A. Yorke, Calculating stable and unstable manifolds, Int. J. Bifurc. Chaos Appl. Sci. Eng., 1(1991), p.605.

DOI: 10.1142/s0218127491000440

Google Scholar

[2] T. S. Parker, L. O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer, Berlin, (1989).

Google Scholar

[3] D. Hobson, An efficient method for computing invariant manifolds, J. Comput. Phys., 104(1991), p.14.

Google Scholar

[4] ]B. Krauskopf, H. M. Osinga, Growing unstable manifolds of planar maps, 1517, 1997, http: /www. ima. umn. edu/preprints/OCT97/1517. ps. gz.

Google Scholar

[5] J. P. England, B. Krauskopf, and H. M. Osinga, Computing One-Dimensional Stable Manifolds and Stable Sets of Planar Maps without the Inverse, SIAM J. Appl. Dyn. Syst., 3(2004), p.161.

DOI: 10.1137/030600131

Google Scholar

[6] M. Dellnitz, A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math., 75(1997), p.293.

DOI: 10.1007/s002110050240

Google Scholar

[7] D. Fundinger, Toward the Calculation of Higher-Dimensional Stable Manifolds and Stable Sets for Noninvertible and Piecewise-Smooth Maps. J Nonlinear Sci, 2008, 18, p.391.

DOI: 10.1007/s00332-007-9016-4

Google Scholar

[8] B. Krauskopf, H.M. Osinga, Globalizing two-dimensional unstable manifolds of maps. Int. J. Bifurc. Chaos Appl. Sci. Engrg., 1998, 8(3): p.483.

DOI: 10.1142/s0218127498000310

Google Scholar

[9] B. Krauskopf and H.M. Osinga, Two-dimensional global manifolds of vector fields. Chaos, 1999, 9(3): p.768.

DOI: 10.1063/1.166450

Google Scholar

[10] J. Palis, W. D. Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York, (1982).

Google Scholar

[11] S. V. Gonchenko, I. I. Ovsyannikov, C. Simo, D. Turaev, Three-dimensional Hénon-like maps and wild Lorenz-like attractors. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2005, 15(11): p.3493.

DOI: 10.1142/s0218127405014180

Google Scholar