A Gradient-Prediction Algorithm for Computing One Dimensional Stable and Unstable Manifolds of Maps

Article Preview

Abstract:

A new algorithm is presented to compute both one dimensional stable and unstable manifolds of planar maps. The global manifold is grown from a local manifold and one point is added each step. It is proved that the gradient of the global manifold can be predicted by the known points on the manifold with a gradient prediction scheme and it can be used to locate the image or preimage of the new point quickly. A new accuracy criterion is derived from the gradient prediction scheme. The performance of the algorithm is tested with several well-known examples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-81

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. You, E. J. Kostelich, J. A. Yorke, Calculating stable and unstable manifolds, Int. J. Bifurc. Chaos Appl.Sci. Eng. 1(1991) p.605.

DOI: 10.1142/s0218127491000440

Google Scholar

[2] T. S. Parker, L. O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer, Berlin, 1989.

Google Scholar

[3] D. Hobson, An efficient method for computing invariant manifolds, J. Comput. Phys. 104(1991) p.14.

Google Scholar

[4] B. Krauskopf, H. M. Osinga, Growing unstable manifolds of planar maps, 1517, 1997, http://www.ima.umn.edu/preprints/OCT97/1517.ps.gz.

Google Scholar

[5] B. Krauskopf, H. M. Osinga, Growing 1D and quasi-2D unstable manifolds of maps, J. Comput. Phys, 146(1998) p.404.

DOI: 10.1006/jcph.1998.6059

Google Scholar

[6] J. P. England, B. Krauskopf, and H. M. Osinga, Computing One-Dimensional Stable Manifolds and Stable Sets of Planar Maps without the Inverse, SIAM J. Appl. Dyn. Syst. 3(2004) p.161.

DOI: 10.1137/030600131

Google Scholar

[7] M. Dellnitz, A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math. 75(1997) p.293.

DOI: 10.1007/s002110050240

Google Scholar

[8] J. Palis, W. D. Melo. Geometric Theory of Dynamical Systems. Springer-Verlag, New York, 1982.

Google Scholar

[9] W. Govaerts, Khoshsiar R. Ghaziani, Yu. A. Kuznetsov and H. G. E. Meijer, Cl MatContM: A toolbox for continuation and bifurcation of cycles of maps, (2006) http://www.matcont.UGent.be.

Google Scholar

[10] R. Khoshsiar Ghaziani, W. Govaerts, Yu. A. Kuznetsov and H. G. E. Meijer, Numerical continuation of connecting orbits of maps in MATLAB, J. Diff. Eqns. Appl. 15(2009) p.849.

DOI: 10.1080/10236190802357677

Google Scholar