[1]
O. Grassel, L. Kruger, G. Fromeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application, Int. J. Plasticity. 16 (2000) 1391-1409.
DOI: 10.1016/s0749-6419(00)00015-2
Google Scholar
[2]
K. Chung, K. Ahn, D.H. Yoo, K.H. Chung, M.H. Seo, S.H. Park, Formability of TWIP (twinning induced plasticity) automotive sheets, Int. J. Plasticity. 27 (2011) 52-81.
DOI: 10.1016/j.ijplas.2010.03.006
Google Scholar
[3]
A.S. Hamada, L.P. Karjalainen, M.C. Somani, The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels, Mater. Sci. Eng. A. 467 (2007) 114-124.
DOI: 10.1016/j.msea.2007.02.074
Google Scholar
[4]
T. Niendorf, F. Rubitschek, H.J. Maier, J. Niendorf, H.A. Richard, A. Frehn, Fatigue crack growth-microstructure relationships in a high-manganese austenitic TWIP steel, Mater. Sci. Eng. A. 527 (2010) 2412-2417.
DOI: 10.1016/j.msea.2009.12.012
Google Scholar
[5]
S. Kang, Y.S. Jung, J.H. Jun, Y.K. Lee, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel, Mater. Sci. Eng. A. 527 (2010) 745-751.
DOI: 10.1016/j.msea.2009.08.048
Google Scholar
[6]
Z.L. Mi, D. Tang, Y.J. Dai, H.T. Jiang, J.C. Lü, In-situ observation on the deformation behaviors of Fe-Mn-C TWIP steel, J. Univ. Sci. Technol. B. 16 (2009) 646-649.
Google Scholar
[7]
A. Soulami, K.S. Choi, Y.F. Shen, W.N. Liu, X. Sun, M.A. Khaleel, On deformation twinning in a 17.5% Mn-TWIP steel: A physically based phenomenological model, Mater. Sci. Eng. A. 528 (2011) 1402-1408.
DOI: 10.1016/j.msea.2010.10.031
Google Scholar
[8]
H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, P.J. Jacques, On the mechanism of twin formation in Fe-Mn-C TWIP steels, Acta. Mater.. 58 (2010) 2464-2476.
DOI: 10.1016/j.actamat.2009.12.032
Google Scholar
[9]
Z.P. Xiong, X.P. Ren, W.P. Bao, S.X. Li, H.T. Qu, Dynamic mechanical properties of the Fe-30Mn-3Si-4Al TWIP steel after different heat treatments, Mater. Sci. Eng. A. 530 (2011) 426-431.
DOI: 10.1016/j.msea.2011.09.106
Google Scholar
[10]
R.G. Xiong, R.Y. Fu, Y. Su, Q. Li, X.C. Wei, L. Li, Tensile properties of TWIP steel at high strain rate, J. Iron Steel Res. Int.. 16 (2009) 81-86, 21.
DOI: 10.1016/s1006-706x(09)60015-7
Google Scholar
[11]
S. Curtze, V.T. Kuokkala, Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate, Acta. Mater.. 58 (2010) 5129-5141.
DOI: 10.1016/j.actamat.2010.05.049
Google Scholar
[12]
W.P. Bao, Y.J. Zhao, L.W. Xu, Z.P. Xiong, X.P. Ren, Effect of solution treatment on microstructure and mechanical properties of TWIP steel, Heat Treatment of Metals. 35 (2010) 33-37.
Google Scholar
[13]
A.M. Lennon, K.T. Ramesh, A technique for measuring the dynamic behavior of materials at high temperatures, Int. J. Plasticity. 14 (1998) 1279-1292.
DOI: 10.1016/s0749-6419(98)00056-4
Google Scholar
[14]
Y.F. Shen, L. Lu, M. Dao, S. Suresh, Strain rate sensitivity of Cu with nanoscale twins, Scripta. Mater.. 55 (2006) 319-322.
DOI: 10.1016/j.scriptamat.2006.04.046
Google Scholar
[15]
S. Kang, Y.S. Jung, J.H. Jun, Y.K. Lee, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel, Mater. Sci. Eng. A. 527 (2010) 745-751.
DOI: 10.1016/j.msea.2009.08.048
Google Scholar