Effect of Strain Rate on Mechanical Properties of Fe-30Mn-3Si-4Al TWIP Steel

Article Preview

Abstract:

Influence of strain rate on mechanical properties of Fe-30Mn-3Si-4Al TWIP steel was studied by compression experiments, indicating that TWIP steel has strain rate softening effect, strain rate insensitivity, and also strain rate hardening effect. According to strain rate sensitivity m changing with strain rate, effect of strain rate on TWIP steel mechanical properties can be divided into three stages: quasi-static stage with strain rate ranging from 0.001 to 100 1/s; high-strain rate stage with strain rate ranging from 701 to 5108 1/s; super-high-strain rate stage with strain rate ranging from 10335 to 30147 1/s. Adiabatic temperature rise tends to increase with strain rate. Strain hardening exponent is divided into three parts: dislocation strengthening stage, twinning strengthening stage and thermal softening stage.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 581-582)

Pages:

1018-1022

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Grassel, L. Kruger, G. Fromeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application, Int. J. Plasticity. 16 (2000) 1391-1409.

DOI: 10.1016/s0749-6419(00)00015-2

Google Scholar

[2] K. Chung, K. Ahn, D.H. Yoo, K.H. Chung, M.H. Seo, S.H. Park, Formability of TWIP (twinning induced plasticity) automotive sheets, Int. J. Plasticity. 27 (2011) 52-81.

DOI: 10.1016/j.ijplas.2010.03.006

Google Scholar

[3] A.S. Hamada, L.P. Karjalainen, M.C. Somani, The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels, Mater. Sci. Eng. A. 467 (2007) 114-124.

DOI: 10.1016/j.msea.2007.02.074

Google Scholar

[4] T. Niendorf, F. Rubitschek, H.J. Maier, J. Niendorf, H.A. Richard, A. Frehn, Fatigue crack growth-microstructure relationships in a high-manganese austenitic TWIP steel, Mater. Sci. Eng. A. 527 (2010) 2412-2417.

DOI: 10.1016/j.msea.2009.12.012

Google Scholar

[5] S. Kang, Y.S. Jung, J.H. Jun, Y.K. Lee, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel, Mater. Sci. Eng. A. 527 (2010) 745-751.

DOI: 10.1016/j.msea.2009.08.048

Google Scholar

[6] Z.L. Mi, D. Tang, Y.J. Dai, H.T. Jiang, J.C. Lü, In-situ observation on the deformation behaviors of Fe-Mn-C TWIP steel, J. Univ. Sci. Technol. B. 16 (2009) 646-649.

Google Scholar

[7] A. Soulami, K.S. Choi, Y.F. Shen, W.N. Liu, X. Sun, M.A. Khaleel, On deformation twinning in a 17.5% Mn-TWIP steel: A physically based phenomenological model, Mater. Sci. Eng. A. 528 (2011) 1402-1408.

DOI: 10.1016/j.msea.2010.10.031

Google Scholar

[8] H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, P.J. Jacques, On the mechanism of twin formation in Fe-Mn-C TWIP steels, Acta. Mater.. 58 (2010) 2464-2476.

DOI: 10.1016/j.actamat.2009.12.032

Google Scholar

[9] Z.P. Xiong, X.P. Ren, W.P. Bao, S.X. Li, H.T. Qu, Dynamic mechanical properties of the Fe-30Mn-3Si-4Al TWIP steel after different heat treatments, Mater. Sci. Eng. A. 530 (2011) 426-431.

DOI: 10.1016/j.msea.2011.09.106

Google Scholar

[10] R.G. Xiong, R.Y. Fu, Y. Su, Q. Li, X.C. Wei, L. Li, Tensile properties of TWIP steel at high strain rate, J. Iron Steel Res. Int.. 16 (2009) 81-86, 21.

DOI: 10.1016/s1006-706x(09)60015-7

Google Scholar

[11] S. Curtze, V.T. Kuokkala, Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate, Acta. Mater.. 58 (2010) 5129-5141.

DOI: 10.1016/j.actamat.2010.05.049

Google Scholar

[12] W.P. Bao, Y.J. Zhao, L.W. Xu, Z.P. Xiong, X.P. Ren, Effect of solution treatment on microstructure and mechanical properties of TWIP steel, Heat Treatment of Metals. 35 (2010) 33-37.

Google Scholar

[13] A.M. Lennon, K.T. Ramesh, A technique for measuring the dynamic behavior of materials at high temperatures, Int. J. Plasticity. 14 (1998) 1279-1292.

DOI: 10.1016/s0749-6419(98)00056-4

Google Scholar

[14] Y.F. Shen, L. Lu, M. Dao, S. Suresh, Strain rate sensitivity of Cu with nanoscale twins, Scripta. Mater.. 55 (2006) 319-322.

DOI: 10.1016/j.scriptamat.2006.04.046

Google Scholar

[15] S. Kang, Y.S. Jung, J.H. Jun, Y.K. Lee, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel, Mater. Sci. Eng. A. 527 (2010) 745-751.

DOI: 10.1016/j.msea.2009.08.048

Google Scholar