[1]
P. Lazar, R. Podloucky, Ab initio study of the mechanical properties of NiAl microalloyed By X=Cr, Mo, Ti, Ga, Phys. Rev. B. 73(2006)104114.
Google Scholar
[2]
P. Gumbsch,R. Schroll, Atomistic aspects of the deformation of NiAl, Intermetallics. 7(1999)447-454.
DOI: 10.1016/s0966-9795(98)00096-x
Google Scholar
[3]
K. A. GschneidnerJr., A. M. Russell, et al, A family of ductile intermetallic compounds, Nat. Mater. 2 (2003)587-591.
Google Scholar
[4]
J.R. Morris, Y. Ye, Y-B. Lee, et al, Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds, Acta Mater. 52 (2004) 4849-4852.
DOI: 10.1016/j.actamat.2004.06.050
Google Scholar
[5]
Q. Chen, S.B. Biner, Stability of perfect dislocations in rare-earth intermetalic compounds: YCu, YAg and YZn, Acta. Mater. 53 (2005)3215-3223.
DOI: 10.1016/j.actamat.2005.03.026
Google Scholar
[6]
Y.J. Shi, Y.L. Du, G. Chen, G. L . Chen, First-principle study on phase statbility and electronic structure of YCu, Phys. Lett. A 368(2007) 495-498.
DOI: 10.1016/j.physleta.2007.04.047
Google Scholar
[7]
Y.R. Wu, W.Y. Hu, S.C. Han, First-principles calculation of the elastic constants, the electronic density of states and the ductility mechanism of the intermetallic compounds: YAg, YCu and YRh, Physica B 403(2008)3792-3797.
DOI: 10.1016/j.physb.2008.07.009
Google Scholar
[8]
Y.R. Wu, W.Y. Hu, Energetic and properties of vacancies, anti-sites, and atomic defects (B, C, and N) in ductile B2-YM(M=Ag, Cu, Rh) intermetallics, Mater. Sci. Forum 689(2011) 91-94.
DOI: 10.4028/www.scientific.net/msf.689.91
Google Scholar
[9]
Q. Chen, M. Ji, C.Z. Wang, K.M. Ho, S.B. Biner, Core properties of dislocations in YCu and YAg B2 intermetallic compounds, Intermetallics, 18(2009)312-318.
DOI: 10.1016/j.intermet.2009.08.001
Google Scholar
[10]
Z. Zhang, A.M. Russell, S.B. Biner, et al, Fracture tougnness of polycrystalline YCu, DyCu and YAg, Intermetallics 13(2005) 559-564.
DOI: 10.1016/j.intermet.2004.09.008
Google Scholar
[11]
Y.R. Wu, W.Y. Hu, S.C. Han, Theoretical calculation of thermodynamic data for gold-rare earth alloys with the embedded-atom method, J. Alloys. Comp. 420(2006) 83-93.
DOI: 10.1016/j.jallcom.2005.10.020
Google Scholar
[12]
Y.R. Wu, W.Y. Hu, Molecular dynaimics simulations of thermodynamics, elastic constants and solid solution strengths for Mg-Gd alloys, Eur. Phys. J. B 57(2007) 305-312.
DOI: 10.1140/epjb/e2007-00164-9
Google Scholar
[13]
C. Colinet, The thermodynamic properties of rare-earth metallic systems, J. Alloy. Comp. 225(1995) 409-422.
Google Scholar
[14]
F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen. Coheion in Metals, Transition Metal Alloys, North-Holland, Amsterdam, (1988).
Google Scholar
[15]
S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(1954) 823-843.
DOI: 10.1080/14786440808520496
Google Scholar
[16]
R. Wang, S.F. Wang, X.Z. Wu, A. P Liu, First-principles phonon calculations of thermodynamic properties for ductile rare-earth intermetallic compounds, Intermetallics, 19(2011)1599-1604.
DOI: 10.1016/j.intermet.2011.06.006
Google Scholar