The Structures and Electronic Properties of Composite Material (LaxAl1-X)2O3 from First-Principles Study

Article Preview

Abstract:

The structures and electronic properties of (LaxAl1-x)2O3 are studied by first-principles calculation method. The results show that the composite material (LaxAl1-x)2O3 tend to be in sixfold-coordinated structure when x0.7. (LaxAl1-x)2O3 is in disorder structure and get the minimum band gap when x equals about 0.7. It suggest that (LaxAl1-x)2O3 can be synthesized as high dielectric constant material by doping La2O3 with a lower Al dopant concentrations or by fabricating (LaxAl1-x)2O3 with rich Al content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-161

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. J. Wang, L. D. Zhang, J. P. Zhang, et al., Appl. Phys. Lett. Vol. 92 (2008), 202906-3.

Google Scholar

[2] X. J. Wang, L. D. Zhang, G. He, et al., Appl. Phys. Lett. Vol. 92 (2008), 042905-3.

Google Scholar

[3] H. Jung, K. Im, H. Hwang, and D. Yang, Appl. Phys. Lett. Vol. 76 (2000), 3630-3631.

Google Scholar

[4] L. F. Edge, D. G. Schlom, P. Sivasubramani, et al., Appl. Phys. Lett. Vol. 88 (2006), 112907-3.

Google Scholar

[5] Naoto Umezawa and Kenji Shiraishi, Appl. Phys. Lett. Vol. 97 (2010), 202906-3.

Google Scholar

[6] S. Rana and S. Ram, physica status solidi (a) Vol. 201 (2004), 427-444.

Google Scholar

[7] L. Niinistö, M. Nieminen, J. Päiväsaari, et al., physica status solidi (a) Vol. 201 (2004), 1443-1452.

Google Scholar

[8] M. Haverty, A. Kawamoto, K. Cho, R. Dutton, Appl. Phys. Lett. Vol. 80 (2002), 2669-2671.

Google Scholar

[9] S. M. Hosseinia, H. A. R. Aliabad, and A. Kompany, Eur. Phys. J. B Vol. 43 (2005), 439-444.

Google Scholar

[10] R. A. B. Devine, Journal of Applied Physics Vol. 93 (2003), 9938-9942.

Google Scholar

[11] B. Ersoy and V. Gunay, Ceramics International Vol. 30 (2004), 163-170.

Google Scholar

[12] S. M. Hosseini, H. A. R. Aliabad, and A. Kompany, Ceramics International Vol. 31(2005), 671-675.

Google Scholar

[13] O. Yamaguchi, K. Sugiura, A. Mitsui, et al., J. Am. Ceram. Soc. Vol. 68(1985), C-44-45.

Google Scholar

[14] A. Barrera, M. Viniegra, V. H. Lara, et al., Catalysis Communications Vol. 5 (2004), 569-574.

Google Scholar

[15] X. Luo, and B. Wang, Journal of Applied Physics Vol. 104 (2008), 053503-7.

Google Scholar

[16] X. Luo, and B. Wang, Journal of Applied Physics Vol. 104 (2008), 073518-7.

Google Scholar

[17] M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., Journal of Physics: Condensed Matter Vol. 14 (2002), 2717-2744.

Google Scholar

[18] David Vanderbilt, Phys. Rev. B Vol. 41 (1990), 7892-7895.

Google Scholar

[19] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. Vol. 45 (1980), 566-569.

Google Scholar

[20] J. P. Perdew and Alex Zunger, Phys. Rev. B Vol. 23 (1981), 5048-5079.

Google Scholar

[21] Thomas H. Fischer and Jan Almlof, J. Phys. chem. Vol. 96 (1992), 9768-9774.

Google Scholar

[22] P. Ballirano and R. Caminiti, Journal of Applied Crystallography Vol. 34 (2001), 757-762.

Google Scholar

[23] P. Aldebert and J. P. Traverse, Materials Research Bulletin Vol. 14 (1979), 303-323.

Google Scholar

[24] Mahdi Sanati, Gus L. W. Hart and Alex Zunger, Physical Review B Vol. 68 (2003), 155210-5.

Google Scholar

[25] C. J. Howard, B. J. Kennedy and B. C. Chakoumakos, Journal of Physics: Condensed Matter Vol. 12 (2000), 349-365.

Google Scholar