Electrocatalytic Property of Nano-Fe3O4 Modified Glassy Carbon Electrode

Article Preview

Abstract:

We have synthesized Fe3O4 nanoparticles by simple hydrothermal method. The synthesized material was characterized by XRD, FT-IR and FE-SEM etc., The FT-IR spectrum confirms the formation of Fe3O4. XRD confirms the structure and phase purity of the Fe3O4 nanoparticles. The morphological property was characterized by FE-SEM. The synthesized Fe3O4 nanoparticles were used to modify the glassy carbon electrode (GCE) and the modified electrode (n-Fe3O4/GCE) was found to exhibit electrocatalytic activity for the oxidation of uric acid (UA). It shows that the Fe3O4 nanopowder exhibits promising applications in the development of bio-sensors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

272-275

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.H. Kim, H.S. Lee, B.K. Kwak, B.K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent, J. Magn. Magn. Mater., 289 (2005) 328-330.

DOI: 10.1016/j.jmmm.2004.11.093

Google Scholar

[2] S. Dubus, J.F. Gravel, B.L. Drogoff, P. Nobert, T. Veres, D. Boudreau, PCR-Free DNA Detection Using a Magnetic Bead-Supported Polymeric Transducer and Microelectromagnetic Traps, Anal. Chem.78 (2006) 4457-4464.

DOI: 10.1021/ac060486n

Google Scholar

[3] Y.C. Chang, D.H. Chen, Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions, J. Colloid Interface Sci., 283 (2005) 446-451.

DOI: 10.1016/j.jcis.2004.09.010

Google Scholar

[4] C.Q. Hu, Z.H. Gao, X.R. Yang, Fabrication and magnetic properties of Fe3O4 octahedra, Chem. Phys. Lett., 429 (2006) 513-517.

DOI: 10.1016/j.cplett.2006.08.041

Google Scholar

[5] F.Q. Hu, Z. Li, C.F. Tu, M.Y. Gao, Preparation of magnetite nanocrystals with surface reactive moieties by one-pot reaction, J. Colloid Interface Sci., 311 (2007) 469-474.

DOI: 10.1016/j.jcis.2007.03.023

Google Scholar

[6] R.Y. Hong, T.T. Pan, H.Z. Li, Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids, J. Magn. Magn. Mater., 303 (2006) 60-68.

DOI: 10.1016/j.jmmm.2005.10.230

Google Scholar

[7] R. Suresh, R. Prabu, A. Vijayaraj, K. Giribabu, A. Stephen, V. Narayanan, Fabrication of α-Fe2O3 nanoparticles for the electrochemical detection of uric acid, Synth. React. Inorg. Metal-Org. nano-Met. Chem., 42 (2012), 303–307.

DOI: 10.1080/15533174.2011.610022

Google Scholar

[8] R. Boistelle, J.P. Astier, Crystallization mechanisms in solution, J. Cryst Growth, 90 (1988) 14-30.

Google Scholar

[9] X. Chen, Y. Wang, J. Zhou, W. Yan, X. Li, J.J. Hu, Electrochemical Impedance Immunosensor Based on Three-Dimensionally Ordered Macroporous Gold Film, Anal. Chem., 80 (2008) 2133-2140.

DOI: 10.1021/ac7021376

Google Scholar

[10] A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, B.D. Malhotra, Iron oxide nanoparticles–chitosan composite based glucose biosensor, Biosens. Bioelectron., 24 (2008) 676-683.

DOI: 10.1016/j.bios.2008.06.032

Google Scholar

[11] S. Reddy, B.E. Kumara Swamy, U.B. Chandra, S. Sherigara, H. Jayadevappa, Synthesis of CdO nanoparticles and their modified carbon park electrodes for determination of dopamine and ascorbic acid by using cyclic voltammetry technique, Int. J. Electrochem. Sci., 5 (2010)10-17

DOI: 10.1016/s1452-3981(23)15262-x

Google Scholar