Synthesis, Characterization and Optical Properties of Nano Structure Lead Oxide

Article Preview

Abstract:

Nanocrystalline lead oxide was prepared by solvo-thermal technique at a temperature of 75 °C. X-ray diffraction studies show the formation of stable β - PbO at 75 °C and heat treated from 200 to 500 °C for 2 h. Scanning electron micrograph images reveal the change in morphology of PbO particles from spherical to rhombus shape at higher temperatures. The band gap of the material was estimated by Diffused Reflectance Spectroscopy (DRS) found to be 2.67 eV. Photoluminescence spectrum of all the samples exhibits several band peaks due to radiative transitions from defect levels and recombination process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

329-333

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Shiota, T. Kameda, K. Matsui, N. Hirai, T. Tanaka, J. Power Sources 144 (2005) 358-364

Google Scholar

[2] A. Wantanabe, T. Tsuchiya, Y. Imai, Thin Solid Films 419 (2002) 76 – 81

Google Scholar

[3] Sk. Khadeer Pasha, K.Chidambaram, L. John Kennedy and J. Judith Vijaya, Sensors and Transducers, 122 (2010) 113 - 119

Google Scholar

[4] G. El - Damrawi, E. Mansour, Physica B. 364 (2005)190 - 198

Google Scholar

[5] Sk. Khadeer Pasha, V.S.V. Satyanarayana, A. Sivakumar, K. Chidambaram, L. John Kennedy, Chienese Chemical Letters 22 (2011) 891-894.

DOI: 10.1016/j.cclet.2010.12.053

Google Scholar

[6] G. Trinquier, R. Hoffmann, J. Phys. Chem. 88 (1984) 6696 - 6711

Google Scholar

[7] T. B. Light, J. M. Eldridge, J. W. Mattews, J. H. Greiner, J. Appl. Phys. 46 (1975) 1489 -1492

Google Scholar

[8] Y. Pauleau, E. Harry, J. Vac. Sci. Technol. A 14 (1996) 2006-2012

Google Scholar

[9] M. Baleva, V. Tuncheva, J. Mater. Sci. Lett. 13 (1994) 3-5

Google Scholar

[10] L. D. Madsen, J. Am. Ceram. Soc. 81 (1998) 988 - 996

Google Scholar

[11] .Z. Liping , F. Guo, X. Liu, J. Cui, Y. Qian, J. Cryst. Growth 280 (2005) 575-580

Google Scholar

[12] F. G. Ma, Z.Q. Shao, L.Y. Song, H.M. Tan, Hechenghuaxue, 9 (2001) 449

Google Scholar

[13] M. S. Niasari, F. Mohandes, F. Davar, Polyhedron 28 (2009) 2263 – 2267

Google Scholar

[14] L. J. Chen, S. M Chang, Z. S. Wu, Z. J. Zhang, H. X. Dang, Mater. Lett. 59 (2005) 3119-3121

Google Scholar

[15] J. Li, L.Y. Gong, X. Xia, Yingyonghuaxue 18 (2001) 264

Google Scholar

[16] B.D. Cullity, Elements of X-ray diffraction, Addison-Wesley, (1978) 102 London

Google Scholar

[17] A.K. Chawla, S. Singhal, H.O. Gupta, R. Chandra, Thin Solid Films, 517 (2008) 1042-1046

Google Scholar

[18] D. L. Perry, T. J. Wilkinson, Appl. Phys. A, 89 (2007) 77-80

Google Scholar

[19] S. J. Xia, W. F. Zhou, Electrochim. Acta 40 (1995) 175-180

Google Scholar

[20] B. J. Jin, S. Im, S.Y. Lee, Thin Solid Films. 366 (2000) 107-110

Google Scholar

[21] J. H. Hao, J. Gao, Appl. Sur. Sci. 253 (2006) 372-375

Google Scholar

[22] H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95 (2004) 1246-1250.

Google Scholar