A Theoretical Investigation on the Dimensions and Annealing Effects of InAs/GaAs Quantum Dots for Device Applications at High Bit-Rate Optical Transmission Window of 1.3-1.55 μm

Article Preview

Abstract:

In this paper, we present theoretical model and computations for tuning the photoluminescence (PL) emission of InAs/GaAs quantum dots at 1.3 -1.55 μm by optimizing its height and base dimensions through quantum mechanical concepts. Simulation on the annealing induced compositional change in the QDs was carried out using Fick’s diffusion model. Results from our computation illustrated that lower base size of 10 nm and larger height QDs of 5.1 nm can be effectively utilized for extending the PL emission to longer wavelengths with minimal blue-shift on annealing. This highlights the potential of our model and computation to assist in precisely engineering the optical properties of QD materials for specific device applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

423-427

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Philips, P. Bhattacharya, S. W. Kennerly and M. Dutta, IEEE J. Quantum Electronics, 35 (1999) 936-943.

Google Scholar

[2] H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, IEEE Photonics Technol. Lett. , 12, (2000) 759-761.

DOI: 10.1109/68.853491

Google Scholar

[3] W. H. Lin, C. C. Tseng, K. P. Chao, S. C. Mai, S. Y. Lin and M. C. Yu, IEEE Photonics Technol. Lett. 21 (2009) 1332-1334.

Google Scholar

[4] M. Usman, D. Vasileska and G. Klimeck, Proc. 29th International Conference on the physics of semiconductors, ed. M. J. Caldas and N. Studart, p.527 (2009).

Google Scholar

[5] N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, Appl. Phys. Lett. 85 (2004) 3050-3052.

DOI: 10.1063/1.1805707

Google Scholar

[6] M. Usman, S. Heck, E. Clarke, P. Spencer, H. Ryu, R. Murray and G. Klimeck, J. Appl. Phys. 109 (2011) 104510-8.

Google Scholar

[7] K. Nishi, H. Saito, S. Sugou and J. S. Lee, Appl. Phys. Lett. 74(1999) 1111-1113.

Google Scholar

[8] H. Y. Liu, I. R. Sellers, M. Hopkinson, C. N. Harrison, D. J. Mowbray and M. S. Skolnick, Appl. Phys. Lett. 83 (2003) 3716-3718.

Google Scholar

[9] S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, Appl. Phys. Lett. 72 (1998) 3335-3337.

Google Scholar

[10] S. Liang, H. L. Zhu, X. L. Ye and W. Wang, J. Cryst. Growth, 311 (2009) 2281-2284.

Google Scholar

[11] D. L. Aronstein and C. R. Stroud Jr., Am. J. Phys. 68 (2000) 943-949.

Google Scholar

[12] M. Y. Petrov, I. V. Ignatiev, S. V. Poltavtsev, A. Greilich, A. Bauschulte, D. R. Yakovlev, M. Bayer, Phys. Rev. B 78 (2008) 045315-23.

DOI: 10.1103/physrevb.78.045315

Google Scholar

[13] S. Paul, J. B. Roy, and P. K. Basu, J. Appl. Phys. 69 (1991) 827-829.

Google Scholar

[14] G. Trevisi, L. Seravalli, P. Frigeri, M. Prezioso, J. C. Rimada, E. Gombia, R. Mosca, L. Nasi, C. Bocchi and S. Franchi, Microelectronics Journal, 40 (2009) 465-468.

DOI: 10.1016/j.mejo.2008.06.015

Google Scholar