Optical Study on Gadolinium Oxide Nanoparticles Synthesized by Hydrothermal Method

Article Preview

Abstract:

Cubic phase gadolinium oxide nanoparticles were prepared by hydrothermal method at various reaction temperatures like 60 °C, 120 °C, 180 °C and 240 °C. X-ray Diffraction (XRD) studies confirmed the formation of cubic phase Gd2O3. The broadening of XRD peak, due to crystallite size was investigated with the aid of gaussian and voigt peak fitting function and its comparisons were also performed. Crystallite size calculated from Scherrer formula for Gd2O3 nanoparticles for various reactions temperatures varies between 21 nm and 39 nm. Thermal analysis of as-prepared sample was done and the decomposition temperature was found to be 433 °C for the formation of Gd2O3. The metal-oxygen band in Fourier Transform Infrared Spectroscopy (FTIR) spectra confirmed the presence of Gd2O3. Band gap studies from Diffuse Reflectance Spectroscopy (DRS) revealed the decrease in band gap with respect to the increase in crystallite size. In Photoluminescence (PL) spectra, a broad ultra violet emission is observed between 320 nm and 400 nm. Irrespective of reaction temperature, Scanning Electron Microscopy (SEM) images reported the formation of nanorods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-109

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Guo, N. Dong, M.Yin, W. Zhang, L. Lou, S. Xia: J. Phys. Chem. B Vol. 108 (2004), p.19205

Google Scholar

[2] F. Wang. X. liu: Comp. Nanosci. Technol. Vol. 1 (2011), p.607

Google Scholar

[3] K.H. Lee, Y.J. Bae, S.H. Byeon: Bull. Korean Chem. Soc. Vol. 29 (2008), p.2161

Google Scholar

[4] C. Chang, F. Kimura, T. Kimura and H. Wada: Mater. Lett. Vol.59 (2005), p.1037

Google Scholar

[5] J. Yang, C. Li, Z. Quan, C. Zhang, P. Yan, Y Li, C. Yu, J. Lin, J. Phy. Chem. C Vol. 112 (2008), p.12777

Google Scholar

[6] J. Gomes, A. M. Pires, O. A. Serra: J Flurosec. Vol 16 (2006), p.411

Google Scholar

[7] Q Kuang, Z. W. Lin, W. Lian, Z. Y. Jiang, Z. X. Xie, R. B. Huang, L. S. Zheng: J Solid State Chem. Vol 180 (2007), p.1236

Google Scholar

[8] E. M. Goldys, K. D. Tomsia, S. Jinjun, D. Dosev, I. M. Kennedy, S. Yatsunenko, M. Godlewski: J. Am. Chem. Soc. Vol. 126 (2006), p. (2006)

DOI: 10.1109/iconn.2006.340597

Google Scholar

[9] J. S. Bae, S.S Yi, J.H. Kim, K.S. Shim, B. K. Moon, J. H. Jeong, Y. S. Kim: Appl. Phys. A Vol 82, (2006), p.369

Google Scholar

[10] M. A. Flores-Gonz´ale, C. Louis, R. Bazzi, G. Ledoux, K. Lebbou, S. Roux, P. Perriat, O. Tillement: Appl. Phys. A Vol. 81, (2005), 1358

DOI: 10.1007/s00339-005-3215-3

Google Scholar

[11] Rajeswari Yogamalar and A. Chandra Bose: J. Solid State Chem. Vol. 18 (2011), p.12

Google Scholar

[12] M. D. Fokema, E. Chiu, J. Y. Ying: Langmuir Vol. 16 (2000), p.3154

Google Scholar

[13] G. Liu, G. Hong, J. Wang and X. Dong: J. Alloy.Compd. Vol. 432 (2007), p.200

Google Scholar

[14] T. Eickhoff, P. Grosse and W. Theiss: Vib.Spectrosc. Vol. 1 (1990), p.229

Google Scholar

[15] J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Haung, Z. Gao, Y. Tao, J. Wang, Appl. Phys. B: Vol 98 (2010), p.139

Google Scholar