Enzymatic Production of γ-Aminobutyric Acid Using Rice Bran

Article Preview

Abstract:

An enzymatic method for γ-aminobutyric acid (GABA) production was invested. With this method, rice bran was used as glutamate decarboxylase (GAD) source and exogenous monosodium glutamate(MSG) was used as substrate. We stimulated the rice bran GAD via regulating the temperature, pH, reaction time, buffer and adding PLP, Ca2+ and substrate. In the existence of PLP and Ca2+, the GABA content of rice bran had been improved by about 45 fold. The GABA production reached 2.3g/100g bran, and the Glu conversion reached 100%. As rice bran is a by-product in rice processing and a large quantity of rice bran is commercially available, our study illuminated a safe and efficient way to produce GABA and GABA enriched food.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-91

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mody, I., Dekoninck, Y., Otis, T. S., Scoltesz, I. Bring the cleft at GABA synapses in the brain. Trends Neurosci. (1994) 17: 517-525.

DOI: 10.1016/0166-2236(94)90155-4

Google Scholar

[2] Manyam, B. V., Katz, L., Hare, T. A., Kanifefski, K., Tremblay, R. D. Isoniazid-induced elevation of cerebrospinal fluid (CSF) GABA levels and effects on chorea in Hunitington's disease. Annu. Neurol. (1981)10: 35–37.

DOI: 10.1002/ana.410100107

Google Scholar

[3] Jakobs, C., Jaeken, J., Gibson, K., M. Inherited disorders of GABA metabolism. J. Inher. Met. Dis. (1993)16(4): 704–715.

DOI: 10.1007/bf00711902

Google Scholar

[4] Takahashi, H., Sumi, M., and Koshino, F. Effect of γ-aminobutyric acid (GABA) on normotensive or hypertensive rats and men. Jpn. J. Physiol (1961) 11: 89-95.

DOI: 10.2170/jjphysiol.11.89

Google Scholar

[5] Omori, M., Yano, T., Okamoto, J., Tsushida, T., Murai, T., Higuchi, M. Effect of anaerobically treated tea (gabaron tea) on blood pressure of spontaneously hypertensive rats. J. Jpn. Soc. Biosci. Biotech. (1987)61(11): 1449–1451.

DOI: 10.1271/nogeikagaku1924.61.1449

Google Scholar

[6] Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horio, T., Onoda, A., Kajimoto, O., Takahashi, R., Takahashi, T. Effect of the defatted rice germ enriched with GABA for sleepless, depression, autonomic Disorder by oral administration. J. Jpn. Soc. Food Sci. Tech. (2000).

DOI: 10.3136/nskkk.47.596

Google Scholar

[7] Sawai, Y., Konomi, K., Odaka, Y., Yoshitomi, H., Yamaguchi, Y., Miyama, D., et al. Repeating treatment of anaerobic and aerobic incubation increases the amount of γ-aminobutyric acid in tea shoots. J. Jpn. Soc. Food Sci. Tech. (1999).

DOI: 10.3136/nskkk.46.462

Google Scholar

[8] William Wallace, Jacob Secor, Larry E. Schrader. Rapid Accumulation of γ-Aminobutyric Acid and Alanine in Soybean Leaves in Response to an Abrupt Transfer to Lower Temperature, Darkness, or Mechanical Manipulation. Plant Physiol (1984).

DOI: 10.1104/pp.75.1.170

Google Scholar

[9] Takayo Saikusa, Toshiroh Horino, Yutaka Mori. Accumulation of γ-Aminobutyric Acid (Gaba) in the rice germ during water soaking. Biosci. Biotech . Biochem. (1994) 58(12): 2291-2292.

DOI: 10.1271/bbb.58.2291

Google Scholar

[10] Kinefuchi, M., Sekiya, M., Yamazaki, A., and Yamamoto, K. Accumulation of GABA in brown rice by high pressure treatment. J. Jpn. Soc. Food Sci. Tech. (1999) 46(5): 323–328.

Google Scholar

[11] Noriko Komatsuzaki, Kikuichi Tsukahara, Hidechika Toyoshima, Tadanao Suzuki, Naoto Shimizu, Toshinori Kimura. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng. (2007)78: 556–560.

DOI: 10.1016/j.jfoodeng.2005.10.036

Google Scholar

[12] Takayo Saikusa, Toshiroh Horino, Yutaka Mori. Distribution of Free Amino Acid in the Rice Kernal and Kernal Fraction and the Effect of Water soaking on the Distribution. J. Agric. Food Chem. (1994)42: 1122-1125.

DOI: 10.1021/jf00041a015

Google Scholar

[13] Liu, L.L., Zhai, H.Q., Wan, J. -M. Accumulation of γ-aminobutyric acid in giant-embryo rice grain in relation to glutamate decarboxylase activity and its gene expression during water soaking. Cereal Chem. (2005)82(2): 191-196.

DOI: 10.1094/cc-82-0191

Google Scholar

[14] Ohtsubo, S., Asano, S., Sato, K., Matsumoto, I. Enzymatic Production of γ-Aminobutyric Acid Using Rice (Oryza sativa) Germ. Food Sci. Tech. Res. (2000)6(3): 208-211.

DOI: 10.3136/fstr.6.208

Google Scholar

[15] Zhang, H., Yao, H. Y., Chen, F., Accumulation of γ-aminobutyric acid in rice germ using protease. Biosci. Biotech. Biochem. (2006)70(5): 1160-1165.

DOI: 10.1271/bbb.70.1160

Google Scholar

[16] Ito Gong. Production of GABA-enriched rice bran. Food Ind. (2000)43(10): 61-64.

Google Scholar

[17] Zhang, H., Yao, H. Y., Chen, F., Wang, X., Purification and characterization of glutamate decarboxylase from rice germ. Food Chem. (2007)101(4): 1670-1676.

DOI: 10.1016/j.foodchem.2006.04.027

Google Scholar

[18] Satya Narayan V., Nair P. M. Metabolism, Enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochem. (1990)29: 367-375.

DOI: 10.1016/0031-9422(90)85081-p

Google Scholar

[19] Martin, D. L., Rimvall, K. Regulation of gamma-aminobutyric acid synthesis in the brain. J. Neurochem. (1993)60: 395–407.

DOI: 10.1111/j.1471-4159.1993.tb03165.x

Google Scholar

[20] Baum, G., Chen, Y., Arazi, T., Takatsuji, H., Fromm, H. A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J. Bio. Chem. (1993)68: 19610–19617.

DOI: 10.1016/s0021-9258(19)36560-3

Google Scholar

[21] Snedden, W. A., Koutsia, N., Baum, G., Fromm, H. Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain. J. Bio. Chem. (1996)271: 4148–4153.

DOI: 10.1074/jbc.271.8.4148

Google Scholar

[22] Snedden, W. A., Arazi, T., Fromm, H., Shelp, B. J. Calcium/calmodulin activation of soybean glutamate decarboxylase. Plant Physiol. (1995)108: 543–549.

DOI: 10.1104/pp.108.2.543

Google Scholar

[23] Johnson, B. S., Singh, N. K., Cherry, J. H., Locy, R. D. Purification and characterization of glutamate decarboxylase from cowpea. Phytochem. (1997)46(1): 39–44.

DOI: 10.1016/s0031-9422(97)00236-7

Google Scholar

[24] Aurisano, N., Bertani, A., Reggiani, R. Anaerobic accumulation of 4-aminobutyrate in rice seedlings; causes and significance. Phytochem. (1995)38: 1147–1150.

DOI: 10.1016/0031-9422(94)00774-n

Google Scholar

[25] Barry J. Shelp, Alan W. Bown , Michael D. McLean. Metabolism and functions of gamma-aminobutyric acid. Trends plant sci. (1999)4(11): 446-452.

DOI: 10.1016/s1360-1385(99)01486-7

Google Scholar

[26] Snedden, W.A., Fromm, H. Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci. (1998)3: 299-304.

DOI: 10.1016/s1360-1385(98)01284-9

Google Scholar

[27] Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K., Sansawa, H., Yamori, Y. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br. J. Nutr (2004).

DOI: 10.1079/bjn20041221

Google Scholar

[28] Ki-Bum Park, Suk-Heung Oh. Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresour. Technol. (2007)98: 1675–1679.

DOI: 10.1016/j.biortech.2006.06.006

Google Scholar