Machine Tools Thermostabilization Using Passive Control Strategies

Article Preview

Abstract:

The aim of this study is to investigate passive control strategies using Phase Change Materials in Machine Tools (MTs) thermostabilization. By considering the main issues related to the thermal stability, authors presented the application of novel multifunctional materials to Machine Tools structures. A set of advanced materials are considered: aluminium foams, corrugate-core sandwich panels and polymeric concrete beds. The adopted solutions have been infiltrated by phase change materials (PCMs) in order to maintain the thermal stability of MTs when the environmental temperature is perturbed. The paper shows the results of simulative and experimental tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

252-257

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Gentili, F. Aggogeri, M. Mazzola. The effectiveness of the quality function deployment in managing manufacturing and transactional processes. ASME International Mechanical Engineering Congress and Exposition, Proceedings, 3 (2008) 237-246.

DOI: 10.1115/imece2007-43448

Google Scholar

[2] A.D. Jennings, P.R. Drake. Machine tool condition monitoring using statistical quality control charts. International Journal of Machine Tools and Manufacture. 37 (9) (1997) 1243–1249.

DOI: 10.1016/s0890-6955(97)00016-3

Google Scholar

[3] F. Aggogeri, E. Gentili. Six Sigma methodology: An effective tool for quality management. International Journal of Manufacturing Technology and Management. Volume 14, Issue 3-4, (2008) 289-298.

DOI: 10.1504/ijmtm.2008.017728

Google Scholar

[4] J. Tlusty, M. Polacek. The stability of machine tools against self excited vibrations in machining, ASME International Research in Production Engineering 465-474.

Google Scholar

[5] S. Zhu, G. Ding, S. Qin, J. Lei, L. Zhuang, K. Yan. Integrated geometric error modeling, identification and compensation of CNC machine tools. International Journal of Machine Tools & Manufacture. 52 (2012) 24–29.

DOI: 10.1016/j.ijmachtools.2011.08.011

Google Scholar

[6] A. Borboni, R. Bussola, R. Faglia, P.L. Magnani, A. Menegolo, Movement optimization of a redundant serial robot for high-quality pipe cutting. Journal of Mechanical Design, Transactions of the ASME, 130 (8) (2008).

DOI: 10.1115/1.2918907

Google Scholar

[7] A.C. Okafor, Y.M. Ertekin. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. International Journal of Machine Tools and Manufacture. 40 (8) (2000).

DOI: 10.1016/s0890-6955(99)00105-4

Google Scholar

[8] C. Amici, A. Borboni, R. Faglia, A compliant PKM mesomanipulator: Kinematic and dynamic analyses, Advances in Mechanical Engineering, (2010).

DOI: 10.1155/2010/706023

Google Scholar

[9] T.L. Schmitz, J.C. Ziegert, J.S. Canning, R. Zapata. Case study: A comparison of error sources in high-speed milling, Precision Engineering 32 (2008) 126–133.

DOI: 10.1016/j.precisioneng.2007.06.001

Google Scholar

[10] M. Antonini, A. Borboni, R. Bussola, R. Faglia, A genetic algorithm as support in the movement optimisation of a redundant serial robot. Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, (2006).

DOI: 10.1115/esda2006-95123

Google Scholar

[11] R. Ramesh, M.A. Mannan, A.N. Poo. Error compensation in machine tools - a review, International Journal of Machine Tools & Manufacture. 40 (2000) 1257–1284.

DOI: 10.1016/s0890-6955(00)00010-9

Google Scholar

[12] M.F. Ashby. Materials Selection in Mechanincal Design, Butterwoth-Heinermann, Oxford (1999).

Google Scholar

[13] M. Weck, R. Hartel. Design, Manufacture and Testing of Precision Machines with Essential Polymer Concrete Components. Precision Engineering. 7 (1985) 165-170.

DOI: 10.1016/0141-6359(85)90045-5

Google Scholar

[14] V. Voller, M. Cross. Accurate solutions of moving boundary problems using the enthalpy method. International Journal of Heat Mass Transfer. 24 (1981) 545–56.

DOI: 10.1016/0017-9310(81)90062-4

Google Scholar

[15] F. Neumannn, Die Paruellen Differentialgleichungen der Mathematischen Physik. Reimann–Weber. 2 (1912) 121.

Google Scholar