Spectral-Domain Optical Coherence Tomography for Material Detection

Article Preview

Abstract:

Optical coherence tomography is a non-invasive cross-sectional imaging technology for inhomogeneous samples. Spectral-domain optical coherence tomography is introduced to measure film and Silicon dovetail groove in this paper. A novel method is used to deal with the interference spectrum to improve the quality of the two-dimensional cross-sectional image. The experimental result shows the microstructure of the two samples can be clearly seen as expected. From the visualized two-dimensional cross-sectional imaging, the film thickness and the dimension of the Silicon dovetail groove are obtained with this technique. It is experimentally demonstrated that this system is useful for imaging the microstructure of the internal and surface of film and semiconductor. It can be further developed for other material detection in industrial fields.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 591-593)

Pages:

1139-1142

Citation:

Online since:

November 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pullafito, and J. G. Fujimoto: Science. Vol. 254 (1991) No.5035, p.1178–1181.

DOI: 10.1126/science.1957169

Google Scholar

[2] T. Piotr, I. Magdalena, Applied Physics A, Vol.106 (2012) No. 2, pp.265-277.

Google Scholar

[3] S. D. Chang, Y. X. Mao, G. M. Chang, et al., Optical Engineering, Vol.49 (2010) No. 6,pp.1-6

Google Scholar

[4] T. Anna, C. Shakher, D. S Mehta, Journal of Optics A: Pure and Applied Optics, Vol. 11 (2009) No. 4, pp.1-10

Google Scholar

[5] S. D. Chang, Y. X. Mao, G. M. Chang and C. Flueraru: Opt. Engineering Vol. 49 (2010) No. 6, p.063602.

Google Scholar

[6] P. Targowski, M. Gora, and M. Wojtkowski: Laser Chem. Vol.2006 (2006), p.35373.

Google Scholar

[7] T. Anna, C. Shaker and D. S. Mehta : J. Opt. A: Pure Appl. Opt.11 (2009), pp.1-10.

Google Scholar

[8] R. Leitgeb, C.K. Hitzenberger and A.F. Fercher: Opt. Express. Vol.11 (2003), p.889–894.

Google Scholar

[9] W. Drexler and J. G. Fujimoto: Springer-Verlag, Berlin (2008).

Google Scholar

[10] A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat: Opt. Commun. Vol. 117 (1995), pp.43-48.

Google Scholar

[11] A.F. Fercher, C.K. Hitzenberger, M. Sticker, E. Barriuso-M, R. Leitgeb, W. Drexler and H. Sattmann: Opt. Commun. Vol. 185 (2000), pp.57-64.

DOI: 10.1016/s0030-4018(00)00986-x

Google Scholar

[12] S. D. Chang, S. Sherif, Y. X. Mao and C. Flueraru: Proc. SPIE Vol. 7386 (2009), pp.1-6.

Google Scholar

[13] A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser: Rep. Prog. Phys. Vol. 66 2003, pp.239-303.

DOI: 10.1088/0034-4885/66/2/204

Google Scholar

[14] S.K. Dubey, S. Gyanendra, A. Tulsi, A.Arun, S.M. Dalip and S. Chandra: Proc. SPIE Vol. 7155 (2008), p.71551F1-7.

Google Scholar