Time-Dependent Growth of Hematiete (α-Fe2O3) Nanotube Arrays Produced by Iron Anodizing in Ethylene Glycol Solution

Article Preview

Abstract:

Hematiete (α-Fe2O3) nanotube arrays (NTAs) were prepared on the iron foil by the anodization method in an ethylene glycol electrolyte containing NH4F and deionized water. The α-Fe2O3 NTAs electrodes were characterized by field-emission scanning electron microscopy, grazing incidence X-ray diffraction and UV-vis absorbance spectra. As the anodization processed, the morphology of the foil transformed from nanoporous to nanotube arrays.The resulting α-Fe2O3 NTAs showed a pore diameter of 40 nm, thickness of 1.5 μm, and a minimum wall thickness of 10 nm. The photocatalytic activity of the α-Fe2O3 NTAs was evaluated by degradation of azo dye. The significant photocatalytic performance indicated that the α-Fe2O3 NTAs were an effective photocatalyst to decompose organic pollutants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-150

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda, J. Nature. 238 (1972) 37-38.

Google Scholar

[2] D.K. Zhong, J.W. Sun, H. Inumaru, D.R. Gamelin, J. Am. Chem. Soc. 131 (2009) 6086-6087.

Google Scholar

[3] G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, C.A. Grimes, J. Nano Lett. 7 (2007) 2356-2364.

Google Scholar

[4] Cesar. I, Kay. A, Martinez. J. A. G, Gratzel.M, J. Am, Chem.Soc. 2006, 128, 4582-4583.

Google Scholar

[5] Hu. Y. S, Kleiman-Shwarsctein.A, Forman A, J. Hazen. D, Park, J.-N, McFarland.E.W, J. Chem. Mater. 2008, 20, 3803-3805.

DOI: 10.1021/cm800144q

Google Scholar

[6] Zhou. H, Wong. S, J. ACS Nano 2008, 2, 944-958.

Google Scholar

[7] Mohapatra. S, K. Banerjee. S, Misra. M, J. Nanotechnology, 2008, 19, 315601(7).

Google Scholar

[8] K. Sivula, F.L. Formal, M. Gratzel, J. Chem. Mater. 21 (2009) 2862-2867.

Google Scholar

[9] Zhonghai Zhang,Md. Faruk Hossain,Takakazu Takahashi. Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation, J. Applied Catalysis B: Environmental 95 (2010) 423-429.

DOI: 10.1016/j.apcatb.2010.01.022

Google Scholar

[10] Hiroki Habazaki, Yoshiki Konno, Yoshitaka Aoki, Galvanostatic Growth of Nanoporous Anodic Films on Iron in Ammonium Fluoride-Ethylene Glycol Electrolytes with Different Water Contents, J. Phys. Chem. C 2010, 114, 18853-18859.

DOI: 10.1021/jp1078136

Google Scholar

[11] Thomas J. LaTempa, Xinjian Feng, Maggie Paulose, and Craig A. Grimes. Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays:Rapid Electrochemical Synthesis and Photoelectrochemical Properties, J. Phys. Chem. C 2009, 113, 16293-16298.

DOI: 10.1021/jp904560n

Google Scholar

[12] Mohapatra. S. K, Kondamudi. N, Banerjee. S, Misra. M, J. Langmuir 2008, 24, 11276-11281.

Google Scholar

[13] Nguyen. Q. A. S, Bhargava, Y. V, Devine, T. M, J. Electrochem.Soc. 2009, 156, E55-E61.

Google Scholar

[14] Mohapatra. S. K, Raja. K. S, Misra. M, Mahajan. V. K, Ahmadian, M. Electrochim, J. Acta 2007, 53, 590-597.

Google Scholar

[15] Susanta K. Mohapatra, Shiny E. John, Subarna Banerjee, and Mano Misra.Water Photooxidation by Smooth and Ultrathin α-Fe2O3 NanotubeArrays, J. Chem. Mater. 2009, 21, 3048-3055.

DOI: 10.1021/cm8030208

Google Scholar

[16] Iordanova. N, Dupuis. M, Rosso. K. M, J. Chem. Phys. 2005, 122, 144305(7).

Google Scholar

[17] A. Duret, M. Gratzel, J. Phys. Chem. B 109 (2005) 17184-17191.

Google Scholar