Influence of Carbon Dioxide Concentration on Microalgal Growth in a Bubble Column Photobioreactor

Article Preview

Abstract:

The CO2 sequestration by microalgae is thought to be one of the most sustainable strategies to relieve global warming. To produce 1 ton of microalgal dry biomass, 2 ton of CO2 is required. However, insufficient supply of CO2 will limit microalgal growth, and excessive CO2 both means wasting and inhibits microalgal growth. In the present study, the dissolved CO2 concentration in culture limiting and inhibiting microalgal growth (Chlorella vulgaris) in a bubble column photobioreactor was studied. The experimental results showed that the dissolved CO2 concentration ranging from 107μmol/L to 1500 μmol/L could meet microalgal growth’s need, which provides the guidance for microalgal CO2 biofixation with high efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-140

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kumar, C.N. Dasgupta, B. Nayak, P. Lindblad, D. Das: Bioresource technology (2011).

Google Scholar

[2] C. Yoo, S.Y. Jun, J.Y. Lee, C.Y. Ahn, H.M. Oh: Bioresource technology (2010).

Google Scholar

[3] T.M. Mata, A.A. Martins, N.S. Caetano: Renewable and Sustainable Energy Reviews (2010).

Google Scholar

[4] S.W. Li, S.J. Luo, X.L. Fan, Z.M. Yang, J.S. Yin, R.B. Guo: Advanced Materials Research (2012).

Google Scholar

[5] C.U. Ugwu, H. Aoyagi, H. Uchiyama: Bioresource technology (2008).

Google Scholar

[6] S.Y. Chiu, C.Y. Kao, C.H. Chen, T.C. Kuan, S.C. Ong, C.S. Lin: Bioresource technology (2008).

Google Scholar

[7] M.G. de Morais, J.A. Costa: Biotechnology letters (2007).

Google Scholar

[8] E. Jacob-Lopes, C.H.G. Scoparo, T.T. Franco: Chemical Engineering and Processing: Process Intensification (2008).

Google Scholar

[9] M.G. de Morais, J.A. Costa: J Biotechnol (2007).

Google Scholar

[10] C.J. Hulatt, D.N. Thomas: Bioresource technology (2011).

Google Scholar

[11] S. Rados, B. Vaclav, D. Frantisek: Arch Hydrobiol Suppl (1975).

Google Scholar

[12] T.M. Sobczuk, F.G. Camacho, F.C. Rubio, F. Fernández, E.M. Grima: Biotechnology and bioengineering (2000).

Google Scholar

[13] J.C. Weissman, R.P. Goebel, J.R. Benemann: Biotechnology and bioengineering (1988).

Google Scholar

[14] Y.K. Lee, H.S. Tay: Journal of applied phycology (1991).

Google Scholar

[15] G. Hodaifa, M.E. Martínez, S. Sánchez: Biotechnology and Bioprocess Engineering (2010).

Google Scholar

[16] I. Douskova, J. Doucha, K. Livansky, J. Machat, P. Novak, D. Umysova, V. Zachleder, M. Vitova: Applied microbiology and biotechnology (2009).

DOI: 10.1007/s00253-008-1811-9

Google Scholar

[17] A.S. Miron, A.C. Gomez, F.G. Camacho, E.M. Grima, Y. Chisti: Journal of Biotechnology (1999).

Google Scholar

[18] S. Aiba: Microbial Reactions (1982).

Google Scholar