A Global Approach of the Finite Element Simulation of Hot Stamping

Article Preview

Abstract:

The use of quenched boron steel components is an economic way to achieve significant improvements in terms of weight saving and crash performance. The material and process knowledge on the hot stamping of boron steels (e.g. Arcelor’s USIBOR 1500 P®) by the stampers needs to be extended and accurate simulation tools must be developed to support the growth of this forming technology. This paper simultaneously addresses the specific requirements of the hot stamping simulation and the current state of the art in this field. A specific approach is presented for the detection of the process limits within the simulation tool. A software chain has been set up with the target to decrease the computation times.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

763-770

Citation:

Online since:

May 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kahl, M.: Some like it hot. Automotive Manufacturing Solutions (2004), Sept/Oct, 49-52.

Google Scholar

[2] Kefferstein, R.: Development of Safety and Structural Automotive Parts by Hot-Stamping: Example of the Solution USIBOR 1500 P,. Journées Sidérurgiques Internationales ATS 2004. Paris, 9. - 10. 12. 04.

Google Scholar

[3] Eriksson, M.: Modelling of Forming and Quenching of Ultra High Strength Steel Components for Vehicle Structures. Luleå University of Technology. Doctoral Thesis LTU-DT 02/19 SE. ISSN: 1402-1544 (2002).

Google Scholar

[4] Garcia-Aranda, L.: Etude thermo-mécanique et modélisation numérique de l'emboutissage à chaud de l'Usibor 1500. Ecole des Mines de Paris. PhD-Thesis (2004), in French.

Google Scholar

[5] Lorenz, D.; Roll, K.: Simulation of Hot Stamping and Quenching of Boron Alloyed Steel. 7th Int. ESAFORM Conf. on Mat. Forming, April 28-30 2004, Trondheim, Norway, pp.659-662.

Google Scholar

[6] Chen, J.: Modelling of Hot Stamped Steel. Great Designs in Steel Seminar 2004. www. autosteel. org/pdfs/gdis_2004_chen. pdf.

Google Scholar

[7] Åkerström, P.: Material Characterisation for Simulation of Press Hardening. Luleå University of Technology. Licenciate Thesis LTU-LIC 04/28 SE. ISSN: 1402-1757 (2004).

Google Scholar

[8] Eriksson, M.; Oldenburg, M.; Somani, M.C.; Karjalainen, L.P.: Testing and Evaluation of Material Data for Analysis of Forming and Hardening of Boron Steel Components. Modelling Simul. Mater. Sci. Eng. 10 (2002), 277-294.

DOI: 10.1088/0965-0393/10/3/303

Google Scholar

[9] Bouaziz, O.; Quidort, D.; Feuillu, D: A Unified Description of Non-Steady State Deformation for Steels in the Austenitic Temperature Range. 41st Thermomechanical Processing of Steels, Liège, Belgique, June (2004).

Google Scholar

[10] Burte, P.R.; Im, Y.T.; Altan, T.; Semiatin, S.L.: Measurement and Analysis of Heat Transfer and Friction during Hot Forging. Trans. ASME, J. of Eng. for Ind., 112, 332-339.

DOI: 10.1115/1.2899596

Google Scholar

[11] Malinowski, Z.; Lenards, J.G.; Davies, M.E.: A Study of the Heat Transfer Coefficient as a Function of Temperature and Pressure. J. of Mat. Proc. Techn., 42 (1994), 125-142.

Google Scholar

[12] Garcia-Aranda, L.; Ravier, P.; Chastel, Y.: Hot Stamping of Quenchable Steels: Material Data and Process Simulations. IDDRG 2003 Conf., Proc. (2003), 155-164.

DOI: 10.4271/2003-01-2859

Google Scholar

[13] Wang, Z.D.; Qu, J.B.; Liu, X.H.; Wang, G.D.: Influence of Hot Deformation on Continuous Cooling Bainitic Transformation in a Low Carbon Steel. Acta Metallurgica Sinica (English letters). 11 (1998) 2, 121-127.

Google Scholar

[14] Hanlon, D.N.; Sietsma, J.; van der Zwaag, S: The Effect of Plastic Deformation of Austenite on the Kinetics of Subsequent Ferrite Formation. ISIJ International 41 (2001) 9, 1028-1036.

DOI: 10.2355/isijinternational.41.1028

Google Scholar

[15] Somani, M.C.; Karjalainen, L.P.; Eriksson, M.; Oldenburg, M.: Dimensional Changes and Microstructural Evolution in B-bearing Steel in the Simulated Forming and Quenching Process. ISIJ International, 41 (2001) 4, 361-367.

DOI: 10.2355/isijinternational.41.361

Google Scholar

[16] Umemoto, M.; Hiramatsu, A.; Moriya, A.; Watanabe, T.; Nanba, S.; Nakajima, N.; Anan, G.; Higo, Y.: Computer Modelling of Phase Transformation from Work-hardened Austenite. ISIJ International 32 (1992) 3, 306-315.

DOI: 10.2355/isijinternational.32.306

Google Scholar

[17] Serajzadeh, S.: Modelling the Temperature History and Phase Transformations during Cooling of Steel. J. of . Mat. Proc. Techn. 146 (2004), 311-317.

DOI: 10.1016/j.jmatprotec.2003.11.010

Google Scholar

[18] Babu, S.S.; Goodwin, G.M.; Rohde, R.J.; Sielen, B.: Effect of Boron on the Microstructure of Low-Carbon Steel Resistance-Seam Welds. Welding Journal 77 (1998), 249-253.

Google Scholar