Modelling and Analysis of Integrated Hotforming and Quenching Processes

Article Preview

Abstract:

In the automotive industry a general tendency to choose steels with enhanced strength for structural parts can be observed. This trend results from the increased lightweight design efforts to satisfy the fleet consumption restrictions. Hot forming and quenching of boron steel offers the possibility to improve the component strength and reduce the weight of structural parts. The main influences on the process are described and a method to model and simulate this process using the finite element method using LS-DYNA is presented. Experimental investigations of the contact heat transfer have been carried out to enhance the simulation accuracy. A prototyping tool of a structural part is used to examine the process under production conditions. Temperatures of the tool and the part are measured during the process. These temperatures are compared with the simulation results in order to reevaluate the results of the process simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

787-794

Citation:

Online since:

May 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Haepp, H. J.: Fertigungskonzepte in der Automobilindustrie, in: Proc. Vom CAD-Modell zum hochgenauen Blechteil, EFB-Kolloquium, Fellbach , (2002).

Google Scholar

[2] N.N.: ULSAB-AVC Advanced Vehicle Concepts, Final Report, (2002).

Google Scholar

[3] Lovins, A. B.: Supercars: Advanced Hybrid Vehicles, Encyclopaedia of Energy Technology and the Environment, Wiley-Interscience, (1995).

Google Scholar

[4] Lake, T. H: Researching Recovery, Autocar, pp.76-78, GB, (1987).

Google Scholar

[5] Roll, K.: Einsatz der FEM-Simulation zur Gestaltung von Leichtbaufahrzeugen, in: Proc. MEFORM 2003, Freiberg , (2003).

Google Scholar

[6] Zöller, A.; Frank, T.; Haufe, A.: Berücksichtigung von Blechumformergebnissen in der Crashberechnung, 3. LS-DYNA Anwenderforum, Bamberg , (2004).

Google Scholar

[7] Kim, H.; Hong, S.; Huh, H.: The Evaluation of Crashworthiness of Vehicles with Forming Effect, 4th European LS-DYNA Users Conference, (2003).

Google Scholar

[8] Richter, F.: Die wichtigsten physikalische Eigenschaften von 52 Eisenwerkstoffen, Verlag Stahl Eisen, Verlag Stahl Eisen, (1973).

Google Scholar

[9] N. N.: Physikalische Eigenschaften von Stählen, Stahl Eisen Werkstoffblatt 310, Verein deutscher Eisenhüttenleute, (1992).

Google Scholar

[10] Eriksson, M.: Modelling of Forming and Quenching of Ultra High Strength Steel Components for Vehicle Structures, 4th Doctoral Thesis, Departement of applied Physics and Mechanical Engineering, Lulea University of Technology, Sweden (2002).

Google Scholar

[11] N. N.: LS-DYNA 970 Keyword User's Manual, Livermore Software Technology Corporation, Livermore, (2003).

Google Scholar

[12] Brännberg, N.: Computational Aspects on Simulation of Sheet Metal Forming, Institute of Technology, Dep. Of Solid Mechanics, Linköping, (1994).

Google Scholar

[13] N. N.: Precoated USIBOR 1500, Arcelor, (2003).

Google Scholar