Preparation of Al2O3/Cu Composites by Internal Oxidation in Cu-Al Alloy Sheet Processing

Article Preview

Abstract:

Internal oxidation Cu-Al alloy sheet processing has been used to prepare dispersion-strengthened Al2O3/Cu composites. A new technique has been developed that successfully avoids mixed Cu-Al powder preparation, H2-reduction, and sintering processes. The microstructure and phase were investigated by metallurgical microscope, SEM, and TEM. Holding-time, internal oxidation temperature and thickness of Cu-Al alloy sheet were the three key factors with regard to preparing Al2O3/Cu composites by internal oxidation in Cu-Al alloy sheet. The mechanical characteristics and electric properties of Al2O3/Cu composites sheet and hot-extruded rod were examined. The results show hot extrusion process enhances microhardness and ultimate tensile strength to a higher level with and exerts a little influence on high electrical conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

2034-2039

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Entezarian, R.A. Drew, Mater. Sci. Eng. A 212 (1996) 206.

Google Scholar

[2] S.E. Broyles, K.R. Anderson, J.R. Groza, J.C. G1beling, Metal. Trans. A 27 (1996) 1217.

Google Scholar

[3] S.H. Kim, D.N. Lee, Mater. Sci. Technol. 15 (1999) 352.

Google Scholar

[4] T.S. Srivatsan, N. Narendra, J.D. Troxell, Mater. Des. 21 (2000) 191-198.

Google Scholar

[5] Y. Tamaka, M. Noguchi,Weld.Int.1(11) (1987) 1074.

Google Scholar

[6] M.A. Morris, D.G. Morris, Mater. Sci. Eng. A 104 (1990) 201.

Google Scholar

[7] S. Suresh, A. Mortensen, A. Needleman, Fundam. Met. Matrix. Compos. 1993.

Google Scholar

[8] A. Upadhyaya, G.S. Upadhyaya, Mater. Des. 16 (1995) 41-45.

Google Scholar

[9] H. Ferkel, NanoStruct. Mater.11 (5) (1999) 595-602.

Google Scholar

[10] V. Rajkovic, D. Bozic, M.T. Jovanovic, J. Mater. Process. Technol. 200 (2008) 106-114.

Google Scholar

[11] D.Y. Ying, D.L. Zhang, Mater. Sci. Eng. A 286 (2000)152–156.

Google Scholar

[12] K.H. Min, S.K. Oh, Y.D. Kim, I.H. Moon, J. Teknol. 43 (2005) 1–10.

Google Scholar

[13] Z. Hussain, K.H. Keong, J. Tek. 43 (2005) 1–10.

Google Scholar

[14] V. Rajkovic, D. Bozic, M.T. Jovanovic, J. Mater.Charact. 57 (2006) 94-99.

Google Scholar

[15] D.W. Lee, G.H. Ha, B.K. Kim, Scrip. Mater. 44 (2001) 2137–2140.

Google Scholar

[16] D.W. Lee, B.K. Kim, Mat. Lett. 58 (2004) 378– 383.

Google Scholar

[17] F. Shehata, A. Fathy, M. Abdelhameed, S.F. Moustafa, Mater. Des. 30 (2009) 2756-2762.

Google Scholar

[18] Y. Yoshino, T. Shibata, J. Amer. Ceram. Soc. 75 (10) (1992) 2756.

Google Scholar

[19] S. Yi, K.P. Trumble, D.R. Gaskell, Acta Mater. 47(11) (1999) 3221.

Google Scholar

[20] M. S. Motta, P.K. Jena, E.A. Brocchi, I.G. Solórzano, Mater. Sci. Eng. A 380 (2001) 175–177.

Google Scholar

[21] P.K. Jena, E.A. Brocchi, M.S. Motta, Mater. Sci. Eng. A 313 (2001) 180–186.

Google Scholar

[22] P.K. Jena, E.A. Brocchi, I.G. Solórzano, M.S. Motta, Mater. Sci. Eng.A 371 (2004) 72–78.

Google Scholar

[23] R.H. Liu, K.X. Song, S.G. Jia, X.F. Xu, J.X. Gao, X.H. Guo, Chin. J. Aeronau. 21 (2008) 281-288.

Google Scholar

[24] S.H. Liang, Z.K. Fan, L. Xua, L. Fang, Compos.A 35 (2004) 1441–1446.

Google Scholar

[25] K.X. Song, J.D. Xing, Q.M. Dong, P. Liu, B.H. Tian, X.J. Cao, Mater. Sci. Eng. A 380 (2004) 117-122.

Google Scholar

[26] G. B. Li, J.B. Sun, Q.M. Guo, R. Wang, J. Mater. Process. Technol. 170 (2005) 336–340.

Google Scholar

[27] M. X. Guo, M.P. Wang, L.F. Cao, R.S. Lei, Mater. Character. 58 (2007) 928–935.

Google Scholar

[28] N. Birks, G. H. Meier, F. S. Pettit, Introd. to the High Temp. Oxid. of Met. 1983, 91–130.

Google Scholar

[29] J. L. Meijering, Adv. in Mater. Res. 5 (1971) 1–83.

Google Scholar

[30] K.X. Song, J. D. Xing, Q. M. Dong, P. Liu, B. H. Tian, X. J. Cao, Mater. Des. 26 (2005) 337-341

Google Scholar