Applications of Nanostructured Materials as Additives in Space Fluid Lubricants

Article Preview

Abstract:

With an extended service life expectancy of space crafts, fluid lubricants attracted intense interests of the fields of tribology, due to their long life under EDH conditions, higher thermal conductance, lower frictional and torque noise, and rapid processing compared to the solid lubricants. However, there are still some disadvantages of fluid lubricants, such as finite vapor pressure, narrow range of operating temperature, degradation of some oils, viscosity temperature-dependence and so on. So far, there have existed some space fluid lubricants, such as PFPE, MAC, PAO and mineral oil based lubricants. It seems that there will be a challenge for a new type of fluid lubricants to come out without any limits above. Recent arisen nanostructured materials assisted in improvement of the research of space fluid lubricants, and the results indicated that some nanostructured materials exactly promoted the tribological properties of fluid lubricants. This paper reviewed recent development of nanostructured materials as additives in space fluid lubricants.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

214-222

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Iijima, Nature Helical microtubules of graphitic carbon, 354(1991)56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] Z.L. Wang and J.Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 14(2006):242-246.

DOI: 10.1126/science.1124005

Google Scholar

[3] J.K.Oh and J.M. Park, Iron oxide-based super paramagnetic polymeric nanomaterials: design, preparation, and biomedical applications, Prog.Polym.Sci. 36(2011)168-169.

Google Scholar

[4] S.Morup, M.F. Hansen and C.Frandsen, Magnetic nanoparticles, Comp.Nanosci.Tech. 1(2010) 437-491.

Google Scholar

[5] K.W. Street,jr and K.Miyoshi, Application of carbon based nano-matrials to aeronautics and space lubrication, NASA, 2007, TM-214473,.

Google Scholar

[6] N.Fleischer, M.Genut, L.Rapoport, R.Tenne, New nanotechnology solid lubricants for superior dry lubrication, Proceedings of 10th European space mechanisms and tribology symposium, San Sebastian, Spain, 24-26 September, 2003.

Google Scholar

[7] A.A. Voevodin, J.P.O'Neill and J.S. Zabinski, WC/DLC/WS2 nanocomposite coatings for aerospace tribology, Tribol.Lett. 6(1999)75-78.

Google Scholar

[8] J.S. Zabinski, M.S. Donley, V.J. Dyhouse, N.T.McDevit, Chemical and tribological characterization of Pb-MoS2 films grown by pulsed laser deposition, Tribol.Int. 214(1992)156-63.

DOI: 10.1016/0040-6090(92)90764-3

Google Scholar

[9] Preface, Novel carbons in tribology, Tribol.Int. 37(2004)365-368.

Google Scholar

[10] H.O. Pierson, Handbook of carbon, graphite, diamond and fullerenes: properties, and applications, Park Ridge, NJ: Noyes Publications, 1993.

Google Scholar

[11] S.V. Pepper, E.P. Kingbury, Spiral orbit tribometry part I: description of the tibometer, Tribology Transaction, 46(2003)57-64.

DOI: 10.1080/10402000308982600

Google Scholar

[12] S.V. Pepper, E.P. Kingbury, Spiral orbit tribometry part II: evaluation of three liquid lubricants in vacuum, Tribol.T. 46(1) (2003)65-69.

DOI: 10.1080/10402000308982601

Google Scholar

[13] K.W. Street, M.Marchetti, R.L. Vander Wal and A.J. Tomasek, Evaluation of the tribological behavior of nano-onions in Krytox 143AB, Tribol.Lett. 16(2004)143-149.

DOI: 10.1023/b:tril.0000009724.01711.f4

Google Scholar

[14] K.W. Street, M.Marchetti, R.L. Vander Wal and A.J. Tomasek, Evaluation of the Tribological Behavior of Krytox 143AB With Nano-Onions NASA, 2003, TM -212301.

DOI: 10.1023/b:tril.0000009724.01711.f4

Google Scholar

[15] R.L. Vander Wal, A.J. Tomasek, K.W. Street, W.K. Thompson and D.R. Hull, Friction Properties of Surface-Fluorinated Carbon Nanotubes NASA, 2003, TM-212214.

Google Scholar

[16] K.W. Street, R.L. Vander Wal, Proceedings of World Tribology Congress III, Applications of carbon based nanoparticles to space and aeronautics lubrication, September 12-16, 2005, Washington, D.C., USA.

DOI: 10.1115/wtc2005-63553

Google Scholar

[17] L.Joly-Pottuz, B.Vacher, N.Ohmae, J.M. Martin, T.Epicier, Anti-wear and friction reducing mechanisms of carbon nanoonions as lubricant additives, Tribol.Lett. 30(2008)69-80.

DOI: 10.1007/s11249-008-9316-3

Google Scholar

[18] M.F.Yu, B.S. Files, S.Aprepalli and R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys.Rev.Lett. 84(2000)5552-5555.

DOI: 10.1103/physrevlett.84.5552

Google Scholar

[19] K.Miyoushi, K.W. Street Jr, R.L. Vander Wal, R.Andrews and A.Sayir, Solid lubrication by multiwalled carbon nanotubes in air and in vacuum, Tribol.Lett. 19(2005)191-200.

DOI: 10.1007/s11249-005-6146-4

Google Scholar

[20] V.N. Khabashesku, W.E. Billups and J.L. Margrave, Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions, Accounts Chem.Res. 35 (2002)1087-1095.

DOI: 10.1021/ar020146y

Google Scholar

[21] Y.Liu, Z.Gu, J.L. Margrave and V.N. Khabashesku, Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives, Chem.Mater. 16(2004) 3924-3930.

DOI: 10.1021/cm048875q

Google Scholar

[22] H.Gisser, M.Petronio and A.Shapiro, Graphite fluoride as a solid lubricant, Lub.Eng. 28(1972) 161-164.

Google Scholar

[23] P.Kamarchik and J.L. Margrave, Poly (carbon monofluoride), a solid layered fluorocarbon, Accounts Chem.Res. 11(1978)296-299.

DOI: 10.1021/ar50128a002

Google Scholar

[24] H.O. Pierson, Handbook of carbon, graphite, diamond and fullerenes, processing and applications, Noyes, New York (Chapter 3), 1993.

Google Scholar

[25] K.H.Hu, X.G.Hu and X.J. Sun, Morphological effect of MoS2 nanoparticales on catalytic oxidation and vacuum lubrication, Appl.Surf.Sci. 256(2010)2517-2523.

DOI: 10.1016/j.apsusc.2009.10.098

Google Scholar

[26] K.H.Hu, M.Liu, Q.J. Wang, Y.E.Xu, S.Schraube, X.G.Hu, Tribological properties of molybdenum disulfide nanosheets by monolayer restacking process as additive in liquid paraffin, Tribol.Int. 42(2009)33-39.

DOI: 10.1016/j.triboint.2008.05.016

Google Scholar

[27] L.Cizaire, B.Vacher, T.Le Mogne, J.M. Martin, L.Rapoport, A.Margolin and R.Tenne, Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles, Surf.Coat.Tech. 160(2002)282-287.

DOI: 10.1016/s0257-8972(02)00420-6

Google Scholar

[28] R.Tenne, L.Margulis, M.Genut, G.Hodes, Polyhedral and cylindrical structures of WS2, Nature, 360(1992)444-445.

DOI: 10.1038/360444a0

Google Scholar

[29] Y.Golan, C.Drummond, M.Homyonfer, Y.Feldman, R.Tenne, J.Israelachvili, Microtribology and direct force of WS2 nested fullerene-like nanostructures, Adv.Mater. 11(1999):934-937.

DOI: 10.1002/(sici)1521-4095(199908)11:11<934::aid-adma934>3.0.co;2-l

Google Scholar

[30] L.Rapoport, M.Lvovsky, L.Lapsker, W.Leshinsky, Y.Volovik, Y.Feldman and R.Tenne, Friction and wear of bronze powder composites including fullerene-like WS2 nanoparticles, Wear 249(2001)150-157

DOI: 10.1016/s0043-1648(01)00519-1

Google Scholar

[31] L.Rapoport, V.Leshchinsky, L.Lapsker, Y.Volovik, O.Nepomnyashchy, M.Lvovsky, R.Popovitz-Biro, Y.Feldman and R.Tenne, Tribological properties of WS2 nanoparticles under mixed lubrication, Wear, 255(2003)785-793.

DOI: 10.1016/s0043-1648(03)00044-9

Google Scholar

[32] L.L. Zhang, J.P.Tu, H.M.Wu and Y.Z. Yang, WS2 nanorods prepared by self-transformation process and their properties as additive in base oil, Mater.Sci.Eng. A 454-455(2007):487-491.

DOI: 10.1016/j.msea.2006.11.072

Google Scholar

[33] D.G.V. Jones, M.A. Fowzy, J.F. Landry, W.R. Jones.Jr, B.A. Shogrin and Q.G. Nguyen, An additive to improve the wear characteristics of perfluoropolyether based greases, NASA, 1999, TM-209064.

Google Scholar

[34] M.Zhang, X.Wang, X.Fu, and Y.Xia, Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefin, Tribol.Int. 42(2009)1029-1039.

DOI: 10.1016/j.triboint.2009.02.012

Google Scholar

[35] S.Qiu, J.Dong and G.Chen, Wear and friction behavior of CaCO3 nanoparticles used as additives in lubricating oils, Lub.Sci. 12(2000)205-212.

Google Scholar

[36] J.Ma, M.Bai, "Effect of ZrO2 nanoparticles additive on the tribological behavior of multialkylated cyclopentane", Tribol.Lett. 36(2009)191-198.

DOI: 10.1007/s11249-009-9459-x

Google Scholar