[1]
S.Iijima, Nature Helical microtubules of graphitic carbon, 354(1991)56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
Z.L. Wang and J.Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 14(2006):242-246.
DOI: 10.1126/science.1124005
Google Scholar
[3]
J.K.Oh and J.M. Park, Iron oxide-based super paramagnetic polymeric nanomaterials: design, preparation, and biomedical applications, Prog.Polym.Sci. 36(2011)168-169.
Google Scholar
[4]
S.Morup, M.F. Hansen and C.Frandsen, Magnetic nanoparticles, Comp.Nanosci.Tech. 1(2010) 437-491.
Google Scholar
[5]
K.W. Street,jr and K.Miyoshi, Application of carbon based nano-matrials to aeronautics and space lubrication, NASA, 2007, TM-214473,.
Google Scholar
[6]
N.Fleischer, M.Genut, L.Rapoport, R.Tenne, New nanotechnology solid lubricants for superior dry lubrication, Proceedings of 10th European space mechanisms and tribology symposium, San Sebastian, Spain, 24-26 September, 2003.
Google Scholar
[7]
A.A. Voevodin, J.P.O'Neill and J.S. Zabinski, WC/DLC/WS2 nanocomposite coatings for aerospace tribology, Tribol.Lett. 6(1999)75-78.
Google Scholar
[8]
J.S. Zabinski, M.S. Donley, V.J. Dyhouse, N.T.McDevit, Chemical and tribological characterization of Pb-MoS2 films grown by pulsed laser deposition, Tribol.Int. 214(1992)156-63.
DOI: 10.1016/0040-6090(92)90764-3
Google Scholar
[9]
Preface, Novel carbons in tribology, Tribol.Int. 37(2004)365-368.
Google Scholar
[10]
H.O. Pierson, Handbook of carbon, graphite, diamond and fullerenes: properties, and applications, Park Ridge, NJ: Noyes Publications, 1993.
Google Scholar
[11]
S.V. Pepper, E.P. Kingbury, Spiral orbit tribometry part I: description of the tibometer, Tribology Transaction, 46(2003)57-64.
DOI: 10.1080/10402000308982600
Google Scholar
[12]
S.V. Pepper, E.P. Kingbury, Spiral orbit tribometry part II: evaluation of three liquid lubricants in vacuum, Tribol.T. 46(1) (2003)65-69.
DOI: 10.1080/10402000308982601
Google Scholar
[13]
K.W. Street, M.Marchetti, R.L. Vander Wal and A.J. Tomasek, Evaluation of the tribological behavior of nano-onions in Krytox 143AB, Tribol.Lett. 16(2004)143-149.
DOI: 10.1023/b:tril.0000009724.01711.f4
Google Scholar
[14]
K.W. Street, M.Marchetti, R.L. Vander Wal and A.J. Tomasek, Evaluation of the Tribological Behavior of Krytox 143AB With Nano-Onions NASA, 2003, TM -212301.
DOI: 10.1023/b:tril.0000009724.01711.f4
Google Scholar
[15]
R.L. Vander Wal, A.J. Tomasek, K.W. Street, W.K. Thompson and D.R. Hull, Friction Properties of Surface-Fluorinated Carbon Nanotubes NASA, 2003, TM-212214.
Google Scholar
[16]
K.W. Street, R.L. Vander Wal, Proceedings of World Tribology Congress III, Applications of carbon based nanoparticles to space and aeronautics lubrication, September 12-16, 2005, Washington, D.C., USA.
DOI: 10.1115/wtc2005-63553
Google Scholar
[17]
L.Joly-Pottuz, B.Vacher, N.Ohmae, J.M. Martin, T.Epicier, Anti-wear and friction reducing mechanisms of carbon nanoonions as lubricant additives, Tribol.Lett. 30(2008)69-80.
DOI: 10.1007/s11249-008-9316-3
Google Scholar
[18]
M.F.Yu, B.S. Files, S.Aprepalli and R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys.Rev.Lett. 84(2000)5552-5555.
DOI: 10.1103/physrevlett.84.5552
Google Scholar
[19]
K.Miyoushi, K.W. Street Jr, R.L. Vander Wal, R.Andrews and A.Sayir, Solid lubrication by multiwalled carbon nanotubes in air and in vacuum, Tribol.Lett. 19(2005)191-200.
DOI: 10.1007/s11249-005-6146-4
Google Scholar
[20]
V.N. Khabashesku, W.E. Billups and J.L. Margrave, Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions, Accounts Chem.Res. 35 (2002)1087-1095.
DOI: 10.1021/ar020146y
Google Scholar
[21]
Y.Liu, Z.Gu, J.L. Margrave and V.N. Khabashesku, Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives, Chem.Mater. 16(2004) 3924-3930.
DOI: 10.1021/cm048875q
Google Scholar
[22]
H.Gisser, M.Petronio and A.Shapiro, Graphite fluoride as a solid lubricant, Lub.Eng. 28(1972) 161-164.
Google Scholar
[23]
P.Kamarchik and J.L. Margrave, Poly (carbon monofluoride), a solid layered fluorocarbon, Accounts Chem.Res. 11(1978)296-299.
DOI: 10.1021/ar50128a002
Google Scholar
[24]
H.O. Pierson, Handbook of carbon, graphite, diamond and fullerenes, processing and applications, Noyes, New York (Chapter 3), 1993.
Google Scholar
[25]
K.H.Hu, X.G.Hu and X.J. Sun, Morphological effect of MoS2 nanoparticales on catalytic oxidation and vacuum lubrication, Appl.Surf.Sci. 256(2010)2517-2523.
DOI: 10.1016/j.apsusc.2009.10.098
Google Scholar
[26]
K.H.Hu, M.Liu, Q.J. Wang, Y.E.Xu, S.Schraube, X.G.Hu, Tribological properties of molybdenum disulfide nanosheets by monolayer restacking process as additive in liquid paraffin, Tribol.Int. 42(2009)33-39.
DOI: 10.1016/j.triboint.2008.05.016
Google Scholar
[27]
L.Cizaire, B.Vacher, T.Le Mogne, J.M. Martin, L.Rapoport, A.Margolin and R.Tenne, Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles, Surf.Coat.Tech. 160(2002)282-287.
DOI: 10.1016/s0257-8972(02)00420-6
Google Scholar
[28]
R.Tenne, L.Margulis, M.Genut, G.Hodes, Polyhedral and cylindrical structures of WS2, Nature, 360(1992)444-445.
DOI: 10.1038/360444a0
Google Scholar
[29]
Y.Golan, C.Drummond, M.Homyonfer, Y.Feldman, R.Tenne, J.Israelachvili, Microtribology and direct force of WS2 nested fullerene-like nanostructures, Adv.Mater. 11(1999):934-937.
DOI: 10.1002/(sici)1521-4095(199908)11:11<934::aid-adma934>3.0.co;2-l
Google Scholar
[30]
L.Rapoport, M.Lvovsky, L.Lapsker, W.Leshinsky, Y.Volovik, Y.Feldman and R.Tenne, Friction and wear of bronze powder composites including fullerene-like WS2 nanoparticles, Wear 249(2001)150-157
DOI: 10.1016/s0043-1648(01)00519-1
Google Scholar
[31]
L.Rapoport, V.Leshchinsky, L.Lapsker, Y.Volovik, O.Nepomnyashchy, M.Lvovsky, R.Popovitz-Biro, Y.Feldman and R.Tenne, Tribological properties of WS2 nanoparticles under mixed lubrication, Wear, 255(2003)785-793.
DOI: 10.1016/s0043-1648(03)00044-9
Google Scholar
[32]
L.L. Zhang, J.P.Tu, H.M.Wu and Y.Z. Yang, WS2 nanorods prepared by self-transformation process and their properties as additive in base oil, Mater.Sci.Eng. A 454-455(2007):487-491.
DOI: 10.1016/j.msea.2006.11.072
Google Scholar
[33]
D.G.V. Jones, M.A. Fowzy, J.F. Landry, W.R. Jones.Jr, B.A. Shogrin and Q.G. Nguyen, An additive to improve the wear characteristics of perfluoropolyether based greases, NASA, 1999, TM-209064.
Google Scholar
[34]
M.Zhang, X.Wang, X.Fu, and Y.Xia, Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefin, Tribol.Int. 42(2009)1029-1039.
DOI: 10.1016/j.triboint.2009.02.012
Google Scholar
[35]
S.Qiu, J.Dong and G.Chen, Wear and friction behavior of CaCO3 nanoparticles used as additives in lubricating oils, Lub.Sci. 12(2000)205-212.
Google Scholar
[36]
J.Ma, M.Bai, "Effect of ZrO2 nanoparticles additive on the tribological behavior of multialkylated cyclopentane", Tribol.Lett. 36(2009)191-198.
DOI: 10.1007/s11249-009-9459-x
Google Scholar