[1]
Vogel H.J., Baur G., Burchard W.. Quantitative determination of large structures by small-angle light scattering. Colloid & Polymer Science. 2001, 279(2):166-70.
DOI: 10.1007/s003960000314
Google Scholar
[2]
Qiang Zheng, Kuitian Tan, Mao Peng, Yi Pan. Study on the phase separation of thermoplastic-modified epoxy systems by time-resolved small-angle laser light scattering. Journal of Applied Polymer Science.2002, 85(5): 950-6.
DOI: 10.1002/app.10405
Google Scholar
[3]
Culberson Wayne T., Tant, Martin R. Device for study of polymer crystallization kinetics via real-time image analysis of small angle light scattering. Journal of Applied Polymer Science, 1993,47, (3): 395-405.
DOI: 10.1002/app.1993.070470303
Google Scholar
[4]
M.J.D. Powell. Radial basis functions for multivariable inter. polation: a review, in: M.G. Cox, J.C. Mason Eds.. Algorithms for the Approximation, Clarendon Press, Oxford, 1987.
Google Scholar
[5]
D.S. Broomhead, D. Lowe. Multivariable Functional Interpolation and Adaptive Networks. Complex Syst. 1988, 2:321-355.
Google Scholar
[6]
M. Musavi, W. Ahmed, K. Chan, K. Faris, D. Hummels. On the training of radial basis function classifiers.Neural Networks. 1992, 5:595-603.
DOI: 10.1016/s0893-6080(05)80038-3
Google Scholar
[7]
A. Roy, S. Govil, R. Miranda. An algorithm to generate radial basis function (RBF)-like nets for classification problems. Neural Networks. 1995,8: 179.
DOI: 10.1016/0893-6080(94)00064-s
Google Scholar
[8]
B. Mulgrew. Applying radial basis functions. IEEE Signal Processing Magazine. 1996, 13:50-65.
DOI: 10.1109/79.487041
Google Scholar
[9]
M. Servin, F.J. Cuevas. A new kind of neural network based on radial basis functions. Rev. Mex. Fis. 1993, 39: 235-249.
Google Scholar
[10]
F.J. Cuevas, M. Servin, R. Rodriguez-Vera. Depth object recovery using radial basis functions. Optics Communications. 1999, 163:270–277.
DOI: 10.1016/s0030-4018(99)00143-1
Google Scholar
[11]
M. Dornier, M. Decloux, G. Trystram and A. Lebert, Dynamic modeling of crossflow microfiltration using neural networks, J. Membr. Sci.. 1995, 98:263–273.
DOI: 10.1016/0376-7388(94)00195-5
Google Scholar
[12]
M.A. Razavi, A. Mortazavi and M. Mousavi, Dynamic modelling of milk ultrafiltration by artificial neural network, J. Membr. Sci.. 2003, 220: 47–58.
DOI: 10.1016/s0376-7388(03)00211-4
Google Scholar
[13]
W.R. Bowen, M.G. Jones and H.N.S. Yousef, Dynamic ultrafiltration of proteins — a neural network approach, J. Membr. Sci., 1998, 146: 225–235.
DOI: 10.1016/s0376-7388(98)00108-2
Google Scholar
[14]
G.R. Shetty, H. Malki and S. Chellam, Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks. J. Membr. Sci.. 2003, 212:99–112.
DOI: 10.1016/s0376-7388(02)00473-8
Google Scholar
[15]
H. Niemi, A. Bulsari and S. Palosaari, Simulation of membrane separation by neural networks, J. Membr. Sci.. 1995, 102:185–191.
DOI: 10.1016/0376-7388(94)00314-o
Google Scholar
[16]
M. Chakraborty, C. Bhattacharya and S. Dutta, Studies on the applicability of artificial neural network (ANN) in emulsion liquid membranes, J. Membr. Sci.. 2003, 220:155–164.
DOI: 10.1016/s0376-7388(03)00226-6
Google Scholar
[17]
S. Ramaswamy, A.R. Greenberg and M.L. Peterson, Non-invasive measurement of membrane morpho logy via UFDR: pore-size characterization, J. Membr. Sci. 2004, 239:143–154.
DOI: 10.1016/j.memsci.2003.08.030
Google Scholar
[18]
R.J. Schilling, J.J. Carroll and A.F. Al-Ajlouni, Approximation of nonlinear systems with radial basis function neural networks. Trans. on Neural Networks. 2001, 12:1–15.
DOI: 10.1109/72.896792
Google Scholar
[19]
Huaiqun Chen, Albert S. Kim. Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach. Desalination. 2006, 192: 415–428.
DOI: 10.1016/j.desal.2005.07.045
Google Scholar
[20]
D. Rusua, D. Genoe, P. van Puyvelde, E. Peuvrel-Disdier, P. Navarda, G.G. Fuller. Dynamic light scattering during shear: measurements of diffusion coefficients. Polymer. 1999, 40: 1353–1357.
DOI: 10.1016/s0032-3861(98)00366-8
Google Scholar
[21]
S. Lambert, S. Moustier, Ph. Dussouillez, M. Barakat, J.Y. Bottero, J. Le Petit, and P. Ginestet. Analysis of the structure of very large bacterial aggregates by small-angle multiple light scattering and confocal image analysis. Journal of Colloid and Interface Science. 2003, 262:384–390.
DOI: 10.1016/s0021-9797(03)00167-x
Google Scholar
[22]
O. Glatter. A new method for the evaluation of small-angle scattering data. J. Appl. Crystallogr. 1977,10: 415–421.
DOI: 10.1107/s0021889877013879
Google Scholar
[23]
O. Glatter. Evaluation of small-angle scattering data from lamellar and cylindrical particles by the indirect transformation method. J. Appl. Crystallogr. 1980, 13:577–584.
DOI: 10.1107/s0021889880012794
Google Scholar
[24]
O. Glatter, O. Kratky (Eds.), Small-Angle X-Ray Scattering, Academic Press, London, 1982.
Google Scholar
[25]
O. Glatter. Convolution square root of band-limited symmetrical functions and its application to small-angle scattering data. J. Appl. Crystallogr. 14 1981,14:101-108.
DOI: 10.1107/s002188988100887x
Google Scholar
[26]
O. Glatter, B. Hainisch, J. Appl. Crystallogr. Improvements in real-space deconvolution of small-angle scattering data. 1984, 17: 435–441.
DOI: 10.1107/s0021889884011894
Google Scholar
[27]
O. Glatter, O. Kratky (Eds.), Small-Angle X-Ray Scattering, Academic Press, London, 1982.
Google Scholar