Parameter Optimization for Vibration Flow Field of Polystyrene Melts via RBF Neural Networks Combined with SALS

Article Preview

Abstract:

This work aims at developing an accurate measurement of characterization flow field of polymer melts by small-angle light scattering (SALS). In this article we propose a new method, based on radial basis function neural network (RBFNN) for predicting the optimum vibration field parameters. A laser light passes through polymer melts in the visual slit die. The results reported in this study were obtained with polystyrene (PS) with rotation speed at 20 rpm. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. RBFNN inputs consist of frequency and amplitude, which are used as input parameters to predict the maximum light intensity projection area. RBFNN predicts that the optimum value of frequency, amplitude are 15.86 Hz and 0.20mm, respectively. And the maximum light intensity projection area is predicted to be 9260 pixels.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

757-761

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Vogel H.J., Baur G., Burchard W.. Quantitative determination of large structures by small-angle light scattering. Colloid & Polymer Science. 2001, 279(2):166-70.

DOI: 10.1007/s003960000314

Google Scholar

[2] Qiang Zheng, Kuitian Tan, Mao Peng, Yi Pan. Study on the phase separation of thermoplastic-modified epoxy systems by time-resolved small-angle laser light scattering. Journal of Applied Polymer Science.2002, 85(5): 950-6.

DOI: 10.1002/app.10405

Google Scholar

[3] Culberson Wayne T., Tant, Martin R. Device for study of polymer crystallization kinetics via real-time image analysis of small angle light scattering. Journal of Applied Polymer Science, 1993,47, (3): 395-405.

DOI: 10.1002/app.1993.070470303

Google Scholar

[4] M.J.D. Powell. Radial basis functions for multivariable inter. polation: a review, in: M.G. Cox, J.C. Mason Eds.. Algorithms for the Approximation, Clarendon Press, Oxford, 1987.

Google Scholar

[5] D.S. Broomhead, D. Lowe. Multivariable Functional Interpolation and Adaptive Networks. Complex Syst. 1988, 2:321-355.

Google Scholar

[6] M. Musavi, W. Ahmed, K. Chan, K. Faris, D. Hummels. On the training of radial basis function classifiers.Neural Networks. 1992, 5:595-603.

DOI: 10.1016/s0893-6080(05)80038-3

Google Scholar

[7] A. Roy, S. Govil, R. Miranda. An algorithm to generate radial basis function (RBF)-like nets for classification problems. Neural Networks. 1995,8: 179.

DOI: 10.1016/0893-6080(94)00064-s

Google Scholar

[8] B. Mulgrew. Applying radial basis functions. IEEE Signal Processing Magazine. 1996, 13:50-65.

DOI: 10.1109/79.487041

Google Scholar

[9] M. Servin, F.J. Cuevas. A new kind of neural network based on radial basis functions. Rev. Mex. Fis. 1993, 39: 235-249.

Google Scholar

[10] F.J. Cuevas, M. Servin, R. Rodriguez-Vera. Depth object recovery using radial basis functions. Optics Communications. 1999, 163:270–277.

DOI: 10.1016/s0030-4018(99)00143-1

Google Scholar

[11] M. Dornier, M. Decloux, G. Trystram and A. Lebert, Dynamic modeling of crossflow microfiltration using neural networks, J. Membr. Sci.. 1995, 98:263–273.

DOI: 10.1016/0376-7388(94)00195-5

Google Scholar

[12] M.A. Razavi, A. Mortazavi and M. Mousavi, Dynamic modelling of milk ultrafiltration by artificial neural network, J. Membr. Sci.. 2003, 220: 47–58.

DOI: 10.1016/s0376-7388(03)00211-4

Google Scholar

[13] W.R. Bowen, M.G. Jones and H.N.S. Yousef, Dynamic ultrafiltration of proteins — a neural network approach, J. Membr. Sci., 1998, 146: 225–235.

DOI: 10.1016/s0376-7388(98)00108-2

Google Scholar

[14] G.R. Shetty, H. Malki and S. Chellam, Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks. J. Membr. Sci.. 2003, 212:99–112.

DOI: 10.1016/s0376-7388(02)00473-8

Google Scholar

[15] H. Niemi, A. Bulsari and S. Palosaari, Simulation of membrane separation by neural networks, J. Membr. Sci.. 1995, 102:185–191.

DOI: 10.1016/0376-7388(94)00314-o

Google Scholar

[16] M. Chakraborty, C. Bhattacharya and S. Dutta, Studies on the applicability of artificial neural network (ANN) in emulsion liquid membranes, J. Membr. Sci.. 2003, 220:155–164.

DOI: 10.1016/s0376-7388(03)00226-6

Google Scholar

[17] S. Ramaswamy, A.R. Greenberg and M.L. Peterson, Non-invasive measurement of membrane morpho logy via UFDR: pore-size characterization, J. Membr. Sci. 2004, 239:143–154.

DOI: 10.1016/j.memsci.2003.08.030

Google Scholar

[18] R.J. Schilling, J.J. Carroll and A.F. Al-Ajlouni, Approximation of nonlinear systems with radial basis function neural networks. Trans. on Neural Networks. 2001, 12:1–15.

DOI: 10.1109/72.896792

Google Scholar

[19] Huaiqun Chen, Albert S. Kim. Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach. Desalination. 2006, 192: 415–428.

DOI: 10.1016/j.desal.2005.07.045

Google Scholar

[20] D. Rusua, D. Genoe, P. van Puyvelde, E. Peuvrel-Disdier, P. Navarda, G.G. Fuller. Dynamic light scattering during shear: measurements of diffusion coefficients. Polymer. 1999, 40: 1353–1357.

DOI: 10.1016/s0032-3861(98)00366-8

Google Scholar

[21] S. Lambert, S. Moustier, Ph. Dussouillez, M. Barakat, J.Y. Bottero, J. Le Petit, and P. Ginestet. Analysis of the structure of very large bacterial aggregates by small-angle multiple light scattering and confocal image analysis. Journal of Colloid and Interface Science. 2003, 262:384–390.

DOI: 10.1016/s0021-9797(03)00167-x

Google Scholar

[22] O. Glatter. A new method for the evaluation of small-angle scattering data. J. Appl. Crystallogr. 1977,10: 415–421.

DOI: 10.1107/s0021889877013879

Google Scholar

[23] O. Glatter. Evaluation of small-angle scattering data from lamellar and cylindrical particles by the indirect transformation method. J. Appl. Crystallogr. 1980, 13:577–584.

DOI: 10.1107/s0021889880012794

Google Scholar

[24] O. Glatter, O. Kratky (Eds.), Small-Angle X-Ray Scattering, Academic Press, London, 1982.

Google Scholar

[25] O. Glatter. Convolution square root of band-limited symmetrical functions and its application to small-angle scattering data. J. Appl. Crystallogr. 14 1981,14:101-108.

DOI: 10.1107/s002188988100887x

Google Scholar

[26] O. Glatter, B. Hainisch, J. Appl. Crystallogr. Improvements in real-space deconvolution of small-angle scattering data. 1984, 17: 435–441.

DOI: 10.1107/s0021889884011894

Google Scholar

[27] O. Glatter, O. Kratky (Eds.), Small-Angle X-Ray Scattering, Academic Press, London, 1982.

Google Scholar