Elastomechanical Study of Magnetoeletric Coupling in Bilayer of Lithium Zinc Ferrite and Lead Zirconate Titanate

Article Preview

Abstract:

A theoretical model based on the constitutive equations of piezoelectrics and magnetostrictor is introduced to discuss the magnetoelectric (ME) coupling in freebody bilayer containing magnetostrictive and piezoelectric phases. The ME coupling at low frequency of Ni0.8Zn0.2Fe2O4–PZT bilayer have been studied by using the model and the corresponding material parameters of individual phases. The results show that the ME voltage coefficients can increase to a maximum at a given volume fraction of piezoelectric phase. An approximately linear increase of the maximum has been obtained with strengthening interface coupling. Analysis shows that large magnetostriction, appropriate volume fraction and ideal interface coupling are key ingredients for obtaining excellent ME performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

813-820

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. J. Busch-Vishniac: Phys. Today Vol. 51(1998), p.28.

Google Scholar

[2] V. J. Folen, G. T. Rado and E. W. Stalder: Phys. Rev. Lett. Vol. 6(1961), p.607.

Google Scholar

[3] J. F. Scott: Phys. Rev. B Vol. 16(1977), p.2329.

Google Scholar

[4] J. Van Suchtelen: Phillips Res. Rep. Vol. 27(1972), p.28.

Google Scholar

[5] C. W. Nan: Phys. Rev. B Vol. 50(1994), p.6082.

Google Scholar

[6] J. van den Boomgaard and R. A. J. Born: J. Mater. Sci. Vol. 13(1978), p.1538.

Google Scholar

[7] J. van den Boomgaard, A. M. J. G. Van Run and J. Van Suchtelen: Ferroelectrics Vol. 10(1976), p.295.

DOI: 10.1080/00150197608241997

Google Scholar

[8] J. Ryu, A. V. Carazo, K. Uchino and H. Kim: Jpn. J. Appl. Phys. Vol. 40(2001), p.4948.

Google Scholar

[9] J. Ryu, S. Priya, A. V. Carazo, K. Uchino and H. Kim: J. Am. Ceram. Soc. Vol. 84(2001), p.2905.

Google Scholar

[10] G. Srinivasan, E. T. Rasmussen, J. Gallegos and R. Srinivasan: Phys. Rev. B Vol. 64(2001), p.214408.

Google Scholar

[11] Y. X. Liu, J. G. Wan, J. –M. Liu and C. W. Nan: J. Appl. Phys. Vol. 94(2003), p.5111.

Google Scholar

[12] S. X. Dong, J. F. Li and D. Viehland: IEEE Trans. Ultrason. Ferroelectr. Freq. Control Vol. 50(2003), p.1253.

Google Scholar

[13] G. Harshe, J. P. Dougherty and R. E. Newnham: Int. J. Appl. Electromagn. Mater. Vol. 4(1993), p.145.

Google Scholar

[14] M. Avellaneda and G. Harshe: J. Intell. Mater. Sys. Struct. Vol. 5(1994), p.501.

Google Scholar

[15] M. I. Bichurin, V. M. Petrov and G. Srinivasan: J. Appl. Phys. Vol. 92(2002), p.7681.

Google Scholar

[16] M. I. Bichurin, V. M. Petrov and G. Srinivasan: Phys. Rev. B Vol. 68(2003), p.054402.

Google Scholar

[17] M. I. Bichurin, V. M. Petrov and G. Srinivasan: Ferroelectrics Vol. 280(2002), p.165.

Google Scholar

[18] G. Srinivasan, E. T. Rasmussen, B. J. Levin and R. Hayes: Phys. Rev. B Vol. 65(2002), p.134402.

Google Scholar

[19] G. Srinivasan, E. T. Rasmussen and R. Hayes: Phys. Rev. B Vol. 67(2003), p.014418.

Google Scholar

[20] Bayrashev Andrey, Robbins William P and Ziaie Babak: Sensors and Actuators A Vol. 114 (2004), p.244.

Google Scholar

[21] Zhang Ning, Yin Xiao-Ming, Wang Miao, T. Schneider and G. Srinivasan: Chinese Physics Letter Vol. 23(2006), p.463.

Google Scholar

[22] N. Zhang, D. Liang, T. Schneider and G. Srinivasan: J. Appl. Phys. Vol. 101(2007), p.083902.

Google Scholar