[1]
Ezpeleta, J., J.M. Colom, and J. Martinez, A Petri net based deadlock prevention policy for flexible manufacturing systems. Robotics and Automation, IEEE Transactions on, 1995. 11(2): pp.173-184.
DOI: 10.1109/70.370500
Google Scholar
[2]
Li, Z.W. and M.C. Zhou, Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 2004. 34(1): pp.38-51.
DOI: 10.1109/tsmca.2003.820576
Google Scholar
[3]
Li, Z. and D. Liu, A correct minimal siphons extraction algorithm from a maximal unmarked siphon of a Petri net. International journal of production research, 2007. 45(9): pp.2161-2165.
DOI: 10.1080/00207540500464942
Google Scholar
[4]
Uzam, M. and M. Zhou, An improved iterative synthesis method for liveness enforcing supervisors of flexible manufacturing systems. International journal of production research, 2006. 44(10): pp.1987-2030.
DOI: 10.1080/00207540500431321
Google Scholar
[5]
Huang, Y.S. and Y.L. Pan, Enhancement of an efficient liveness-enforcing supervisor for flexible manufacture systems. The International Journal of Advanced Manufacturing Technology, 2010. 48(5): pp.725-737.
DOI: 10.1007/s00170-009-2299-x
Google Scholar
[6]
Li, Z., M.C. Zhou, and M.D. Jeng, A maximally permissive deadlock prevention policy for FMS based on Petri net siphon control and the theory of regions. Automation Science and Engineering, IEEE Transactions on, 2008. 5(1): pp.182-188.
DOI: 10.1109/tase.2006.884674
Google Scholar
[7]
Shih, Y.Y. and D. Chao, Sequence of Control in S3PMR. The Computer Journal, 2010. 53(10): pp.1691-1703.
DOI: 10.1093/comjnl/bxp081
Google Scholar
[8]
Chao, D.Y., Reaching more states for control of FMS. International journal of production research, 2010. 48(4): pp.1217-1220.
DOI: 10.1080/00207540701747210
Google Scholar