Synchronization and Anti-Synchronization of the Chaotic Modified Chua's Circuits via a Same Controller

Article Preview

Abstract:

Based on the Lyapunov stability theorem, a same controller in the form is designed to achieve the global synchronization and anti-synchronization of the chaotic modified Chua's circuits. The controller obtained in this paper is simpler than those obtained in the existing results, and it is a linear single input controller. Numerical simulations verify the correctness and the effectiveness of the proposed theoretical results

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 605-607)

Pages:

1972-1975

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. M. Pecora, T. L. Carroll, Physics Review Letter, Vol 64 (1990) p.821.

Google Scholar

[2] S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C. S. Zhou, Physics Report, Vol 366 (2002) p.1.

Google Scholar

[3] D. B. Huang, R. W. Guo, Chaos, Vol 14 (2004) p.152.

Google Scholar

[4] D. B. Huang, Physical Review E, Vol 69 (2004) p.067201.

Google Scholar

[5] R. W. Guo, D. B. Huang, L. Z. Zhang, Chaos, Solitons \& Fractal, Vol 25 (2005) p.1255.

Google Scholar

[6] R. W. Guo, Physics Letter A, Vol 372 (2008) p.5593.

Google Scholar

[7] R. W. Guo, U. E. Vincent, B. A. Idowu, Physica Scripta, Vol 79 (2009) p.035801.

Google Scholar

[8] R. W. Guo, G. Li, Chaos, Solitons \& Fractal, Vol 40 (2009) p.453.

Google Scholar

[9] U. E. Vincent, R. W. Guo, Communication on Nonlinear Science and Numerical Simulation, Vol 14 (2009) p.3925.

Google Scholar

[10] W. Lin, Physics Letter A, Vol 372 (2008) p.3195.

Google Scholar

[11] C. M. Kim, S. Rim, W. H. Kye, J. W. Ryu, Y. J. Park, Physics Letters A, Vol 320 (2003) p.39.

Google Scholar

[12] Y. Chen, M. Li, Z. Cheng, Mathematical and Computer Modelling, Vol 52 (2010) p.567.

Google Scholar

[13] M. Al-Sawalha, M. Noorani, Communication on Nonlinear Science and Numerical Simulation, Vol 15 (2010) p.1036.

Google Scholar

[14] H. Yau, Nonlinear Analysis: Real World Applications, Vol 9 (2008) p.2253.

Google Scholar

[15] S. Hammamia, M. Benrejeba, M. Fekib, P. Borne, Physics Letters A, Vol 374 (2010) p.2835.

Google Scholar

[16] J. Hu, S. Chen, L. Chen, Physics Letters A, Vol 339 (2005) p.455.

Google Scholar

[17] U. E. Vincent, J. A. Laoye, Physica A, Vol 384 (2007) p.230.

Google Scholar

[18] W. Li, X. Chen, Z. Shen, Physica A, Vol 387 (2008) p.3747.

Google Scholar

[19] R. W. Guo, Chinines Physics Letter, Vol 28 (2011) p.040205.

Google Scholar

[20] G. Q. Zhong, International Journal of Bifurcation and Chaos, Vol 41 (1994) p.934.

Google Scholar