Determination of Trimethylamine in Air by Cataluminescence-Based Gas Sensor

Article Preview

Abstract:

A sensitive cataluminescence (CTL)-based gas sensor using nano-sized Y2Ti3O9 as a probe was proposed for the determination of trimethylamine (TMA) in air. The gas sensor showed high selectivity for TMA at 490 nm and satisfying activity at 320°C. The linear range of the CTL intensity versus concentration of TMA was 1~70 mg/m3 (γ = 0.995), and the detection limit (3σ) was 0.6 mg/m3. No interference was observed while the foreign substances, such as ammonia, ethanol, benzene, carbon monoxide and sulfur dioxide, were passing through the sensor. The gas sensor displayed good stability for continuously introducing TMA over 100 h, and allowed on-line monitoring of TMA in air.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 605-607)

Pages:

933-936

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Y. Zhao, P.H. Wei, S.H. Chen: Sens. Actuators B 62 (2000), P. 117.

Google Scholar

[2] T.H. Kwon, S.H. Park, J.Y. Ryu, H.H. Choi: Sens. Actuators B 46 (1998), P. 75.

Google Scholar

[3] R.S. Niranjana, S. Meghana, A.B. Londheb, S.R. Mandalea: Sens. Actuators B 87 (2002), P. 406.

Google Scholar

[4] G.R. Dai: Sens. Actuators B 53 (1998), P. 8.

Google Scholar

[5] I. Hayakawa, Y. Iwamoto, K. Kikuta, S. Hirano: Sens. Actuators B 62 (2000), P. 55.

Google Scholar

[6] M.S. Tong, G.R. Dai, D.S. Gao: Mater. Chem. Phys. 69 (2001), P. 176.

Google Scholar

[7] E. Ohashi, Y. Takao, T. Fujita, Y. Shimizu, M. Egashira: J. Food Sci. 56 (2006), P. 1275.

Google Scholar

[8] M. Breysse, B. Claudel, L. Faure, M. Guenin, R. J. Williams: J. Catal. 45 (1976), P. 137.

Google Scholar

[9] M. Nakagawa: Sens. Actuators B 29 (1995), P. 94.

Google Scholar

[10] M. Nakagawa, S. Kawabata, K. Nishiyama, K. Utsunomiya, I. Yamamoto, T. Wada, Y. Yamashita, N. Yamashita: Sens. Actuators B 34 (1996), P. 334.

Google Scholar

[11] K. Utsunomiya, M. Nakagawa, N. Sanari, M. Kohata, T. Tomiyama, I. Yamamoto, T. Wada, N. Yamashita, Y. Yamashita: Sens. Actuators B 24-25 (1995), P. 790.

DOI: 10.1016/0925-4005(95)85175-5

Google Scholar

[12] M. Nakagawa, I. Yamamoto, N. Yamashita: Anal. Sci. 14 (1998), P. 209.

Google Scholar

[13] M. Nakagawa, T. Okabayashi, T. Fujimoto, K. Utsunomiya, I. Yamamoto, T. Wada, Y. Yamashita, N. Yamashita: Sens. Actuators B 51 (1998), P. 159.

DOI: 10.1016/s0925-4005(98)00183-x

Google Scholar

[14] T. Okabayashi, T. Fujimoto, I. Yamamoto, K. Utsunomiya, T. Wada, Y. Yamashita, N. Yamashita, M. Nakagawa: Sens. Actuators B 64 (2000), P. 54.

DOI: 10.1016/s0925-4005(99)00483-9

Google Scholar

[15] T. Okabayashi, T. Toda, I. Yamamoto, K. Utsunomiya, N. Yamashita, M. Nakagawa: Sens. Actuators B 74 (2001), P. 152.

Google Scholar

[16] K.W. Zhou, P. Zhang, W. Chen: Acta Chim. Sinica 68 (2010), P. 921.

Google Scholar

[17] K.W. Zhou, Z.Q. Zhang, L.J. Xing, X. Li, C.X. Fu: Mater. Sci. Forum 694 (2011), P. 184.

Google Scholar

[18] K.W. Zhou, X.R. Zhang: Chinese Journal of Analytical Chemistry 32 (2004), P. 25.

Google Scholar

[19] K.W. Zhou, X.L. Ji, N. Zhang, X.R. Zhang: Sens. Actuators B 119 (2006), P. 392.

Google Scholar