The Synthesis of Cross-Linked Poly Aspartic Acid and Study on Control of the Calcium Carbonate Crystal Morphology

Article Preview

Abstract:

The intermediates polysuccinimide were synthesised by Maleic anhydride. Through the ring-opening reaction of polysuccinimide by ethylenediamine, which followed by alkaline hydrolysis and aminolysis, obtained cross-linked poly aspartic acid has a flaky structure. Using of its reticular, controling on the morphology of calcium carbonate crystals in the water. Compared with poly aspartic acid, the dissolution of the cross-linked product has been reduced by nearly 100 times. Static scaling inhibition experiments confirm that, cross-linked poly aspartic acid not only has the complexing capacity nature of the calcium in water, but also can control the growth of calcium carbonate scale to spherical, which has a special nature of lattice distortion.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 608-609)

Pages:

1433-1436

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kurniawan, T. A.; Chan, G. Y. S.; Loa, W. H.; Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng, 2006, 118(83): 83—86.

DOI: 10.1016/j.cej.2006.01.015

Google Scholar

[2] Tare, V.; Karra, S. B.; Haas, Ch. N. Kinetics of metal removal bychelating resin form acomplex synthetic wastewater. Water, Air, Soil Pollut, 2008, 22(56): 429—430.

DOI: 10.1007/bf00282613

Google Scholar

[3] Gyliene, O.; Nivinskiene, I.; Razmute, I. Copper(II)-EDTA sorption onto chitosan and itsregeneration applying electrolysis. J. Hazard. Mater, 2006, 137(76): 1430—1435.

Google Scholar

[4] Karppinen, T. H.; Yli-Pentti. A. Evaluation of selective ion exchange or nickel and cadmium uptake from the rinsewaters of a platingshop. Sep.ci. Technol, 2010, 35(79): 1619—1620.

DOI: 10.1081/ss-100100244

Google Scholar

[5] Sultan, I. A. Smplied removal of chelated metals. Metal Finish, 2004, 4(16): 26—27.

Google Scholar

[6] Sricharoenchaikit, P. Ion exchange treatment for electroless copper-DTA rinse water. Plat.Surf. Finish, 2009, 76(13): 68—72.

Google Scholar

[7] Chaudhary, A. J.; Donaldson, J. D.; Grimes, S. M.; Hassan, M.Ul.; Spencer, R. J. Simultaneous recovery of heavy metals and degradation of organic species copper and enthylendiaminetetraacetic acid (EDTA).J. Chem. Technol. Biotechnol, 2006, 75(41): 353—356.

DOI: 10.1002/(sici)1097-4660(200005)75:5<353::aid-jctb221>3.0.co;2-y

Google Scholar

[8] Zhao, Y.; Kang, J.; Tan, T. Salt-pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic cid) and poly(acrylic acid). Polymer, 2008, 470(124): 7702—7704.

DOI: 10.1016/j.polymer.2006.08.056

Google Scholar

[9] Chen, Ch. Y.; Lin, M. S.; Hsu, K. R. Recovery of Cu(II) and Cd(II) by chelating resincontaining aspartate groups. J. Hazard. Mater, 2008, 152(59): 986—987.

DOI: 10.1016/j.jhazmat.2007.07.074

Google Scholar

[10] Koodynska, D.; Hubicki, Z.; Geca, M. Application of a new generation complexing agent in removal of heavy metal ions from aqueous olutions. Ind. Eng. Chem. Res, 2008,47(25): 3192—3195.

DOI: 10.1021/ie701742a

Google Scholar

[11] Koodynska, D.; Hubicka, H.; Hubicki, Z. Sorption of heavy metal ons from aqueous solutions in the presence of EDTA on monodisperse anion exchangers. Desalination, 2008, 227(31): 150—151.

DOI: 10.1016/j.desal.2007.06.022

Google Scholar

[12] Socrates, G.; Tables and Charts. Infrared and Raman Characteristic Group Frequencies; John Wiley & Sons, Ltd: Chichester, 2007, 125(83): 489—493.

DOI: 10.1002/jrs.1238

Google Scholar