[1]
B.J. Enquist, J.H. Brown, G.B. West. Allometric scaling of plant energetics and population density, Nature 395(1998) 163–165.
DOI: 10.1038/25977
Google Scholar
[2]
J.H. Brown, J.F. Gillooly, A.P. Allen, et al. Toward a metabolic theory of ecology, Ecology 85(2004) 1771–1789.
DOI: 10.1890/03-9000
Google Scholar
[3]
A.M. Makarieva, V.G. Gorshkov, B.L. Li. Biochemical universality of living matter and its metabolic implications, Funct. Ecol. 19(2005) 547–557.
DOI: 10.1111/j.1365-2435.2005.01005.x
Google Scholar
[4]
A. Clarke. Funct. Ecol. Is there a universal temperature dependence of metabolism? 18(2004a) 252–256.
Google Scholar
[5]
D.A. Coomes. Challenges to the generality of WBE theory, Trends. Ecol. Evol. 21(2006) 593–596.
DOI: 10.1016/j.tree.2006.09.002
Google Scholar
[6]
M.P. O'Connor , S.J. Kemp ,S.J. Agosta , et al. Reconsidering the mechanistic basis of the metabolic theory of ecology, Oikos116(2007) 1058-1072.
Google Scholar
[7]
D.S. Glazier . Beyond the '3/4-power law': variation in the intra- and interspecific scaling of metabolic rate in animals, Biol. Rev.80(2005) 611-662.
DOI: 10.1017/s1464793105006834
Google Scholar
[8]
G.B. West, J.H. Brown, B.J. Enquist. A general model for the structure and allometry of plant vascular systems, Nature 400(1999) 664-667.
DOI: 10.1038/23251
Google Scholar
[9]
J.R. Banavar, A. Maritan, A. Rinaldo. Size and form in efficient transportation networks, Nature 399(1999) 130–132.
DOI: 10.1038/20144
Google Scholar
[10]
P.B. Reich , M.G. Tjoelker , J. L. Machado, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants, Nature 439(2006) 457–461.
DOI: 10.1038/nature04282
Google Scholar
[11]
A. Clarke , K.P.P. Fraser . Why does metabolism scale with temperature? Funct. Ecol. 18(2004b) 243–251.
Google Scholar
[12]
P.S. Dodds , D.H. Rothman , J.S. Weitz. J. Re-examination of the '3/4-law' of metabolism, Theor. Biol 209(2001) 9–27.
Google Scholar
[13]
J.V.D. Meer. Metabolic theories in ecology, Trends. Ecol. Evol. 21(2006) 136–140.
Google Scholar
[14]
H. A. Feldman. On the allometric mass exponent, when it exists, J.Theor. Biol172(1995) 187–197.
Google Scholar
[15]
S.R. Kerr , L.M. Dickie . The Biomass Spectrum: a Predator–Prey Theory of Aquatic Production. Columbia University Press, New York, 2001.
Google Scholar
[16]
G.B. West, J.H. Brown, B.J. Enquist . A general model for the origin of allometric scaling laws in biology, Science 276(1997) 122–126.
DOI: 10.1126/science.276.5309.122
Google Scholar
[17]
M.C. Molles. Ecology: Concepts and Applications. China Science Press, Beijing, 1999, 150-153.
Google Scholar
[18]
A.J. Bloom, F.S. Chapin, H.A. Mooney. Resource limitation in plants – an economic analogy. Annual review of ecology and systematics, Annual review of ecology and systematics 16(1985) 363–392.
DOI: 10.1146/annurev.es.16.110185.002051
Google Scholar
[19]
J.Witting.The body mass allometries as evolutionarily determined by the foraging of mobile organisms, J.Theor. Biol 177(1995) 129–137.
DOI: 10.1006/jtbi.1995.0231
Google Scholar
[20]
B.J. Enquist, J.H. Brown, G.B. West, et al. Scaling metabolism from organisms to ecosystems, Nature 423(2003) 639–642.
Google Scholar
[21]
R.C. Dewar. Plant energetics and population density, Nature 398(1999) 572.
Google Scholar
[22]
J. Weiner. Asymmetric competition in plant populations, Trends. Ecol. Evol. 5(1990) 360–364.
Google Scholar