[1]
Harding, J.A., Shahbaz, M., Srinivas, &Kusiak, A. (2006). Data mining in manufacturing: A review. American Society of Mechanical Engineers. Journal of Manufacturing Science and Engineering, 128(4), 969-976
DOI: 10.1115/1.2194554
Google Scholar
[2]
Lee, S.G., &Ng, Y.C. Hybrid case-based reasoning for on-line product fault diagnosis. International Journal of Advanced Manufacturing Technology, 27,823-840 (2006)
DOI: 10.1007/s00170-004-2235-z
Google Scholar
[3]
Fountain, T., Dietterich, T., &Sudyka, B. Data mining for manufacturing control: An application in optimizing IC test. Exploring artificial intelligence in the new millennium, G. lakemeyer and B. Nebel, eds., Morgan Kaufmann, San Francisco,CA,pp.381-400
Google Scholar
[4]
Maki, H., Teranishi, Y. Development of Automated Data Mining System for Quality Control in Manufacturing. Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp.93-100 (2001)
DOI: 10.1007/3-540-44801-2_10
Google Scholar
[5]
Maki, H., Maeda, A., Morita, T., &Akimori, H. Applying data mining to data analysis in manufacturing. International conference on advances in production management systems, pp.324-331 (2000)
DOI: 10.1007/978-0-387-35569-6_40
Google Scholar
[6]
Shen, L., Tay, F.E.H., Qu, L.S., &Shen, Y. Fault diagnosis using rough set theory. Computers in industry, 43, 61-72 (2000)
DOI: 10.1016/s0166-3615(00)00050-6
Google Scholar
[7]
Kusiak, A. Rough set theory: a data mining tool for semiconductor manufacturing. IEEE Transactions on Electronics Packaging Manufacturing, 24(1), 44-50 (2001)
DOI: 10.1109/6104.924792
Google Scholar
[8]
Dengiz, O., Smith, A.E., &Nettleship, I. Two stage data mining for flaw identification in ceramics manufacturing. International Journal of Productive Research, 44(14), 2839-1851 (2006)
DOI: 10.1080/00207540500534454
Google Scholar
[9]
Irani, K.B., Cheng, J., Fayyad, U.M., &Qian, Z. Applying machine learning to semiconductor manufacturing. IEEE Expert, 8(1), 41-47. (1993)
DOI: 10.1109/64.193054
Google Scholar
[10]
Skormin, V.A., Gorodetski, V.I., &PopYack, I.J. Data mining technology for failure of prognostic of avionics. IEEE Transactions on Aerospace and Electronics Systems, 38(2), 388-401. (2002)
DOI: 10.1109/taes.2002.1008974
Google Scholar
[11]
Jeong, M.K., Lu, J.C., Huo,X., Vidakovic,B., &Chen, D. Wavelet-based data reduction techniques for process fault detection. Technometrics, 48(1), 26-40 (2006)
DOI: 10.1198/004017005000000553
Google Scholar
[12]
Rojas, A., Nandi, A.K. Practical scheme for fast detection and classification of rolling element bearing faults using support vector method. Mechanical Systems and Signal Processing, 20, 1523-1536. (2006)
DOI: 10.1016/j.ymssp.2005.05.002
Google Scholar