The Effect of MgO Dopant on the Dielectric Properties of CaCu3Ti4O12 Ceramics

Article Preview

Abstract:

The properties of undoped and Mg-doped CaCu3Ti4O12 (CCTO) ceramics have been studied. The samples were calcined at 900°C for 12 hours, and sintered at 1030°C for 10 hours. X-ray diffraction analysis on calcined samples shown the formation of CCTO phase with trace of secondary phases meanwhile completed formation of CCTO single phase obtained for sintered pellets. The peak positions of Mg-doped CCTO were slightly left-shifted from the undoped CCTO, attributed to the lattice expansion. Scanning electron microscopy analysis showed that the grains size becomes larger with the increment of dopant amount. Enhanced dielectric constant was observed in the Ca1-xMgxCu3Ti4O12 ceramics with x = 0.05 for the frequency range from 1 MHz to 1 GHz. The dielectric loss seem to be at lowest value when Ca1-xMgxCu3Ti4O12 ceramics with x = 0.10 at the same frequency range. The results indicate that Mg ions have effectively changed the properties of CCTO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-223

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, and A.W. Sleight: J. Sol. Stat. Chem. Vol. 151 (2000), p.323.

Google Scholar

[2] A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt and S.M. Shapiro: Sol. Stat. Comm. Vol. 115 (2000), p.217.

Google Scholar

[3] S. Guillemet-Fritsch, T. Lebey, M. Boulos, and B. Durand: J. Eur. Ceram. Soc. Vol. 26 (2006), p.1245.

Google Scholar

[4] X. H. Zheng, C. Zhang, B. L. Liang, D. P. Tang, X. Huang, and X. L. Liu: J. Alloys Compd. Vol. 505 (2010), L10.

Google Scholar

[5] S. F. Shao, J. L. Zhang, P. Zheng, C. L. Wang, J. C. Li, and M. L. Zhao: Appl. Phys. Lett. Vol. 91 (2007), 042905.

Google Scholar

[6] A. E. Smith, T.G. Calvarese, A. W. Sleight, and M.A. Subramanian: J. Solid State Chem. Vol. 182 (2009), p.409.

Google Scholar

[7] N.S.A. Sharif, S.D. Hutagalung, and Z.A. Ahmad: Adv. Mat. Research Vol. 173 (2011), p.167.

Google Scholar

[8] M.A. Sulaiman, S.D. Hutagalung, M.F. Ain, and Z.A. Ahmad: J. Alloys Compd. Vol. 493 (2010), p.486.

Google Scholar

[9] P. Gao, H. Ji, Q. Jia, and X. Li: J. Alloys Compd. Vol. 527 (2012), p.90.

Google Scholar

[10] W. Li, S. Qiu, N. Chen, and G. Du: J. Mater. Sci. Technol. Vol. 26(8) (2010), p.682.

Google Scholar

[11] Y. Hu, T. -S. Jeng, and J.S. Liu: Ceram. Int. Vol. 38 (2012), p.3459.

Google Scholar

[12] R. D. Shannon, and C. T. Prewitt: Acta Crystallogr. B. Vol 25 (1969), p.925.

Google Scholar

[13] S. Kwon, C. C. Huang, E. A. Patterson, D. P. Cann, E. F. Alberta, S. Kwon, W.S. Hackenberger, and D. P. Cann: Mater. Lett. Vol. 62 (2008), p.633.

DOI: 10.1016/j.matlet.2007.06.042

Google Scholar

[14] T. Li, Z. Chen, Y. Su, L. Su, and J. Zhang: J. Mater. Sci . Vol. 44 (2009), p.6149.

Google Scholar

[15] T. B. Adams, D. C. Sinclair, and A. R. West: Phys. Rev. B. Vol. 73 (2006), p.1.

Google Scholar