Investigation of Grain Size Effect on the Impedance of CaCu3Ti4O12 from 100 Hz to 1 GHz of Frequency

Article Preview

Abstract:

CaCu3Ti4O12 (CCTO) is a cubical perovskite phase and sintered ceramics exhibit very high dielectric constant at room temperature. The speculated origins of the high dielectric constant are the existence of insulative barrier layer at grain boundaries and domain boundaries which created an internal barrier layer capacitance (IBLC) at the microstructure of CCTO. The relation of grains and domains electrical resistance were studied in this work by using impedance spectroscopy (IS). A series of samples with different heat treatment temperature were tested to investigate their microstructure by using field emission scanning electron microscopy (FESEM). The grains and domains resistance was calculated from a wide frequency range of impedance complex plane measurement (100 Hz to 1 GHz). The FESEM and IS analyses showed the dependency of grains and domains resistance to average grains size of CCTO microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

230-235

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.C. Sinclair, T.B. Adams, F.D. Morrison and A.R. West: Appl. Phys. Lett. Vol. 80 (2002), p.2153.

Google Scholar

[2] T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87 Vol. (2004), p.2072–(2079).

Google Scholar

[3] M.A. Sulaiman, S.D. Hutagalung and Z.A. Ahmad: Advanced Materials Research Vol. 364 (2012), p.455–459.

Google Scholar

[4] M.A. Sulaiman, S.D. Hutagalung, J.J. Mohamed, Z.A. Ahmad, M.F. Ain and B. Ismail: J. Alloys Compd. Vol. 509 (2011), p.5701–5707.

Google Scholar

[5] V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais and F. Gervais: Materials Science and Engineering: B Vol. 129 (2006), p.135–138.

DOI: 10.1016/j.mseb.2006.01.004

Google Scholar

[6] S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong and C.L. Wang: J. Appl. Phys. Vol. 99 (2006), p.084106.

Google Scholar

[7] D. -L. Sun, A. -Y. Wu and S. -T. Yin: J. Am. Ceram. Soc. Vol. 91 (2007), p.169–173.

Google Scholar

[8] R. Bodeux, M. Gervais, J. Wolfman, C. Autret-Lambert, G. Liu and F. Gervais: Thin Solid Films Vol. 520 (2012), p.2632–2638.

DOI: 10.1016/j.tsf.2011.11.023

Google Scholar

[9] L. -T. Mei, H. -I. Hsiang and T. -T. Fang: J. Am. Ceram. Soc. Vol. 91 (2008), p.3735–3737.

Google Scholar

[10] T. -T. Fang and L. -T. Mei: J. Am. Ceram. Soc. Vol. 90 (2007), p.638–640.

Google Scholar

[11] T. Adams, D. Sinclair and A.R. West: Advanced Materials (2002), p.2001–(2003).

Google Scholar

[12] Q. Zheng, H. Fan and C. Long: J. Alloys Compd. Vol. 511 (2012), p.90–94.

Google Scholar

[13] O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi and M. Maglione: Physical Review B Vol. 49 (1994), p.7868–7873.

DOI: 10.1103/physrevb.49.7868

Google Scholar