Synthesis and Characterization of MWCNT/Dolomite Hybrid Compound as Potential Composite Fillers

Article Preview

Abstract:

Multiwalled carbon nanotubes/dolomite (MWCNT/dolomite) hybrid compound was synthesized using the Chemical Vapour Deposition (CVD) technique. The catalyst was prepared via the co-precipitation method. The process involves the drying of the precipitate followed by calcination at 900°C.Upon completion of calcinations process, the reduction process was carried under H2 at 400°C and growth in a CH4/N2 gas mixture at 800°C for 30 minutes The reduction process was carried out under H2 and growth in a CH4/N2 gas mixture at 800°C for 30 minutes. The morphological assessment using Field Emission Scanning Electron Microscope (FESEM) showed that the CNT was successfully grown on dolomite particle. High Resolution Transmission Electron Microscope (HRTEM) micrograph further confirmed the presence of MWCNT with varied length and geometry on dolomite surfaces, supported the formation of MWCNT on the dolomites particle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

400-404

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Rothon: Particulate-Filled Polymer Composites second edition p.54 (Rapha Technology Limited, 2003).

Google Scholar

[2] S.S. Sale, M.H.M., Akil and M.H.A. Kudus: Advanced Materials Research Vol. 364 (2012), pp.460-464.

Google Scholar

[3] M.H.A. Kudus, H.M. Akil, H. Mohamad and L.E. Loon: J. Alloys Compd.: Vol. 509 (2011), pp.2784-2788.

Google Scholar

[4] M.H.A. Kudus, H.M. Akil and H. Mohamad: Advanced Materials Research: Vol. 364 (2012), pp.475-479.

Google Scholar

[5] L. C. Qin: Journal of Materials Science letters; Vol. 16 (1997), p.457–459.

Google Scholar

[6] Y. A. Kasumov, A. Shailos, I. I. Khodos, V. T. Volkov, V. I. Ievashov, V. N. Matveev, S. Gu´eron, M. Kobylko, M. Kociak, H. Bouchiat, V. Agache, A.S. Rollier, I. Buchaillot, A.M. Bonnot, and A.Y. Kasumov: Appl. Phys. A; Vol. 88 (2007), p.687–691.

DOI: 10.1007/s00339-007-4028-3

Google Scholar

[7] H. -a. Ichi-oka, N. -o. Higashi, Y. Yamada, T. Miyake, T. Suzuki: Diamond and Related Materials; Vol. 16 (2007), pp.1121-1125.

DOI: 10.1016/j.diamond.2006.11.008

Google Scholar

[8] F. Danafar, A. Fakhru'l-Razi, M. A. M. Salleh and D. R. A. Biak: Chem. Eng. J. Vol. 155 (2009), pp.37-48.

Google Scholar

[9] R.L.V. Wal, T.M. Ticich and V.E. Cutis: Carbon Vol 39(2001), pp.2277-2289.

Google Scholar

[10] T. V. Reshetenko, L. B. Avdeeva, Z.R. Ismagilov and A.L. Chuvilin: Carbon; Vol. 42 (2004), pp.143-148.

DOI: 10.1016/j.carbon.2003.10.015

Google Scholar

[11] R. L. Vander Wal, T. M. Ticich, and V. E. Curtis: Journal of Physical Chemistry A; Vol. 104 (2000), p.7209.

Google Scholar

[12] M.J. Bronikowski: Carbon; Vol. 44 (2006), pp.2822-2832.

Google Scholar

[13] J. Kong, A. M Cassell and H. J. Dai: Chemical Physics Letters V0l. 292 (1998), pp.567-574.

Google Scholar

[14] A. Gohier, C. P Ewels, T.M. minea and M.A. Djouadi: Carbon; Vol. 46 (2008), pp.1331-1338.

DOI: 10.1016/j.carbon.2008.05.016

Google Scholar