Computational Studies of Electronic Structures and Hyperfine Interactions of Muonium in Tetraphenylgermane

Article Preview

Abstract:

The equilibrium structure of muoniatedtetraphenylgermane (GePh4Mu) was studied using the first principle Density Functional Theory (DFT) method. Three muonium (Mu) trapping sites were considered, namely ortho, meta, and para positions on one of the phenyl rings. Geometry optimization procedure was utilized to determine the local energy minimum for all the systems. The total energies corresponding to Mu at the three positions are very similar to each other. For the meta case, the corresponding energy is higher than the other two sites by only about 0.03 eV. The hyperfine parameters of Mu were also calculated. The Mu isotropic hyperfine coupling constants were found to be 441.85 MHz, 449.80 MHz, and 439.01 MHz for the ortho, meta, and para cases, respectively. The anisotropic value was calculated to be very small.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

418-423

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.R. Campanelli, A. Domenicano, F. Ramondo and I. Hargittai: Structural Chemistry Vol. 22 (2011), p.361.

Google Scholar

[2] A.R. Campanelli, A. Domenicano, F. Ramondo and I. Hargittai: Journal of Physical Chemistry A Vol. 105 (2001), p.5933.

Google Scholar

[3] P.C. Chieh: Journal of Chemical Society–Dalton (1972), p.1207.

Google Scholar

[4] K. Claborn, B. Kahr and W. Kaminsky: CrystEngComm Vol. 4.

Google Scholar

[46] (2002), p.252.

Google Scholar

[5] M.A. Hanson, Y.N. Huang and K. Baines: Annual report–National ultrahigh–field NMR facility for solids (2010), p.40.

Google Scholar

[6] O. Knop, K.N. Rankin, T.S. Cameron and R.J. Boyd: (2002). Canadian Journal of Chemistry Vol. 80 (2002), p.1351.

Google Scholar

[7] T.T. Lin, X.M. Liu and C.B. He: Journal of Physical Chemistry B Vol. 108 (2004), p.17361.

Google Scholar

[8] S. Ng, R.V. Sathasivam, K.M. Lo, Y.M. Xie and H.F. Schaefer III: Journal of Physical Chemistry A Vol. 109 (2005), p.12059.

Google Scholar

[9] Pajzderska, C. Ecolivet, A. Girard, J. Sciesinski, T. Wasiutynski and J. Wasicki: Journal of Raman Spectroscopy Vol. 33 (2002), p.618.

Google Scholar

[10] S.D. Warner, I.S. Butler and I. Wharf: Spectrochimica Acta Part A Vol. 56 (2000), p.453.

Google Scholar

[11] U. A. Jayasooriya, in: Fluxional Organometallic and Coordination Compounds, edited by M. Gielen, R. Willem and B. Wrackmeyer, chapter 7, John Wiley & Sons Ltd (2004).

DOI: 10.1002/0470858451

Google Scholar

[12] U.A. Jayasooriya, J.A. Stride, G.M. Aston, G.A. Hopkins, S.F.J. Cox, S.P. Cottrell and C.A. Scott: Hyperfine Interactions, Vol. 106 (1997), p.27.

DOI: 10.1023/a:1012600832007

Google Scholar

[13] J.A. Stride: The Study of Small Molecular Magnets Using Neutron and Muon Spectroscopies (Ph. D Thesis, University of East Anglia 1995).

Google Scholar

[14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.L. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, , D.J. Fox, T. Keith, M.A. Al–Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople: Gaussion 03 (Gaussian, Inc., Wallingford CT 2004).

Google Scholar

[15] E. Roduner, W. Strub, P. Burkhard, J. Hochmann, P.W. Percival, H. Fischer, M. Ramos and C. Webster: Chemical Physics, Vol. 67, p.275.

Google Scholar

[16] E. Roduner, G.A. Brinkman and P.W.F. Louwrier: Chemical Physics, Vol. 88, p.143.

Google Scholar