Mesoporous Silica Sol-Gel as Catalyst for the Synthesis of Alkylpolyglucosides

Article Preview

Abstract:

The synthesis of alkylpolyglucosides involves condensation of decanol with dextrose in the presence of mesoporous silica sol-gel as a catalyst. In this study, mesoporous silica was produced using sol-gel technique by converting tetraethyl orthosilicate (TEOS) into silica. The mesoporous silica was characterized using BET surface area measurement and X-ray Photoelectron Spectroscopy surface analysis. The specific BET surface area was 794m2/g. From the XPS analysis, the Si2p binding energy is 103.7 eV while the O1s binding energy is 532.8eV indicating the formation of Si-O-Si bond which attributed to SiO2. Mesoporous silica has been found efficient to be solid catalyst for synthesis alkylpolyglucosides and easy to be separated. The reaction was carried out 8 hours at 110°C-120°C under vacuum condition. The mass determination of alkylpoluglucosides has been achieved by ESI LC-MS/MS (ToF) positive-mode giving a mass peak at m/z = 343.21 corresponding to [M++ of alkylmonoglucoside peak at retention time 11.0 min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

446-452

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Zembrzuska, A. Zgola-Grzeskowiak and M. Franska: Tenside Surf. Det Vol. 42 Pt 4 (2005), pp.226-228.

Google Scholar

[2] B. Roy and B. Mukhopadhyay: Tetrahedron Letters Vol 48 (2007) pp.3783-3787.

Google Scholar

[3] A. Corma, S. Iborra, S. Miquel, and J. Primo: Journal of Catalysis Vol 161 (1996), pp.713-719.

Google Scholar

[4] S. Shanmugam, B. Viswanathan, and T.K. Varadarajan: Journal of Molecular Catalysis A: Chemical Vol. 223 (2004), pp.143-147.

Google Scholar

[5] Z. Yang, L. Niu, X. Jia, Q. Kang, Z. Ma, Zi. Lei: Catalysis Communications Vol 12 (2011) 798-802.

Google Scholar

[6] F. M. Moghaddam, M. Akhlaghi, L. Hojabri, and M.G. Dekamin: Transactions C: Chemistry and Chemical Engineering Vol. 16 (2009), pp.81-88.

Google Scholar

[7] M.A. Camblor, A. Corma, S. Iborra, S. Miquel, J. Primo, and S. Valencia: Journal of Catalysis Vol 172 (1997), pp.76-84.

DOI: 10.1006/jcat.1997.1837

Google Scholar

[8] A. Corma, S. Iborra, S. Miquel, and J. Primo: Journal of Catalysis Vol 180 (1998), pp.218-224.

Google Scholar

[9] M.J. Climent, A. Corma, S. Iborra, S. Miquel J. Primo, and F. Rey: Journal of Catalysis Vol 183 (1999), pp.76-82.

DOI: 10.1006/jcat.1998.2382

Google Scholar

[10] J. Chapat, A. Finiels, J. Joffre, and C. Moreau: Journal of Catalysis Vol 185 (1999), p.44453.

Google Scholar

[11] Y. Wu, G.Y. Jiu, F.M. Xiao, and S.Z. Jian: Chinese Chemical Letters Vol. 18 (2007), pp.1173-1175.

Google Scholar

[12] W.V. Rybinski and K. Hill: Angew. Int. Ed. Vol 37 (1998), pp.1328-1345.

Google Scholar

[13] M.M.A. El-Sukkary, N.A. Syed, I. Aiad, and W.I.M. El-Azab: Journal of Surfactant Detergent Vol 11 (2008), pp.129-137.

Google Scholar

[14] T. Benvegnu, D. Plusquellec and L. Lemiegre in: Surfactant from Renewable Sources: Synthesis and Applications, edited by M.N. Belgacem and A. Gandini, Monomers, Polymers and Composites from Renewable Resources, chapter, 7; Elsevier (2008).

DOI: 10.1016/b978-0-08-045316-3.00007-7

Google Scholar

[15] Y. Izumi, K. Hisano, and T. Hida: Applied Catalysis A: General Vol. 181 (1999), pp.277-282.

Google Scholar

[16] A. Ducret, A. Giroux, M. Trani, and R. Lortie: Biotechnology and Bioengineering Vol 48 (1995), pp.214-22.

Google Scholar