Influence of Substrate’s Alignment Strategy to the Growth of ZnO Nano-Petals via Solution-Immersion Method

Article Preview

Abstract:

Zinc oxide (ZnO) nanostructures were successfully grown on gold-seeded Si substrate prepared by a solution-immersion method using a novel mixture of an aqueous solution of Zinc nitrate hexahydrate (Zn (NO3)2.6H2O) with a non-toxic, odourless urea (CH4N2O) as a stabilizer. Structural and optical properties of resultant ZnO thin films were investigated by X-Ray Diffraction, FESEM and Photoluminescence Spectroscopy (PL). Clusters of ZnO micro-flower with serrated broad petals with the thickness of petals approximately 60 nm were interestingly formed on the film with horizontal manner of alignment during immersion process. The smallest grain size (29 nm) along (100) orientation was achieve with the alignment of substrate tilt towards 60°. The petals structure has high surface area, is a potential metal oxide nanostructures to be develop for optoelectronic devices and chemical sensors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-65

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Tani, L. Madler and S.E. Pratsinis: Journal of Nanoparticle Research Vol. 4 (2002), p.337–343.

Google Scholar

[2] S. Music, S. Popovic, M. Maljkovic and Dragcˇevic: Journal of Alloys and Compounds Vol. 347 (2002), p.324–332.

Google Scholar

[3] P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey and R.N. Goyal: Bull. Mater. Sci Vol. 31 (2008), p.573–577.

Google Scholar

[4] M. Copuroglu, L.H.K. Koh, S. O'Brien and G.M. Crean: J Sol-Gel Sci Technol Vol. 52 (2009), p.432–438.

Google Scholar

[5] Z. Lamia: Materials Science and Engineering: B Vol. 174 (2010), pp.18-30.

Google Scholar

[6] S.A. Kamaruddin, M.Z. Sahdan, K.Y. Chan, H.K. Yow, J. Krishnasamy, M. Rusop and H. Saim, Influence of immerse time on the properties of Zinc Oxide nanostructures, (2010).

DOI: 10.1109/icp.2010.5604404

Google Scholar

[7] Z. Khusaimi, Synthesis and Characterisation of Low-Dimensional Zinc Oxide Nanostructures by Solution-Immersion and Mist-Atomisation Faculty of Applied Sciences Universiti Teknologi MARA, Selangor, Malaysia, (2012).

DOI: 10.13052/jiems2446-1822.2016.007

Google Scholar

[8] S. -Y. Pung, K. -L. Choy and X. Hou: Journal of Crystal Growth Vol. 312 (2010), p.2049-(2055).

Google Scholar

[9] Z. Khusaimi, M.H. Mamat, M.Z. Sahdan, N. Abdullah and M. Rusop: Defect and Diffusion Forum Vol. 312-315 (2011), pp.104-109.

DOI: 10.4028/www.scientific.net/ddf.312-315.104

Google Scholar

[10] A.A. Azira, Z. Khusaimi, N.F.A. Zainal, S.F. Nik, T. Soga, S. Abdullah and M. Rusop: Solid State Science and Technology Vol. 17 (2009), pp.140-147.

Google Scholar

[11] C. Andreazza-Vignolle, P. Andreazza and D. Zhao: Superlattices and Microstructures Vol. 39 (2006), pp.340-347.

DOI: 10.1016/j.spmi.2005.08.060

Google Scholar

[12] R. Elilarassi and G. Chandrasekaran: Materials Science in Semiconductor Processing Vol. 14 (2011), pp.179-183.

Google Scholar

[13] N. Shakti and P.S. Gupta: Applied Physics Research Vol. 2 (2010), p.

Google Scholar

[14] F.I. Ezema and U.O.A. Nwankwo: Journal Of Optoelectronics and Biomedical Materials Vol. 1 (2010), pp.167-173.

Google Scholar

[15] A. George, S.K. Sharma, S. Chawla, M.M. Malik and M.S. Qureshi: Journal of Alloys and Compounds Vol. In Press, Corrected Proof (2011), p.

Google Scholar

[16] A. Lei, B. Qu, W. Zhou, Y. Wang, Q. Zhang and B. Zou: Materials Letters Vol. 66 (2012), pp.72-75.

Google Scholar

[17] X. Wang, Q. Zhang, B. Zou, A. Lei and P. Ren: Applied Surface Science Vol. 257 (2011), pp.10898-10902.

Google Scholar

[18] H. Zhang, Y. Li, G. Hu, B. Gao and Y. Zhu: J Mater Sci: Mater Electron Vol. 21 (2010), pp.1164-1167.

Google Scholar

[19] N.K. Singh, S. Shrivastava, S. Rath and S. Annapoorni: Applied Surface Science Vol. 257 (2010), pp.1544-1549.

Google Scholar