The Sn Nano-Particles Coated on MCMB as Anodes Material for Lithium Ion Battery

Article Preview

Abstract:

Sn nano particle coatings on MCMB powder, as anodes of lithium ion battery are carried out in SnSO4 solutions by using cathodic electrochemical synthesis and subsequently dried at 100°C. The electro-deposition reaction was follow: Sn2+ + H2O ↔ SnOH+aq + H+; SnOH+aq ↔ SnOH+aqs + e-; SnOH+ads + e- → SnOH; SnOH + H+ + e- → Sn + H2O. The Sn-coated MCMB specimens are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), and charge/discharge tests. The nano-sized Sn particles coated on MCMB powder are obtained in 0.2M SnSO4 solutions and desoition current 0.5A. An important parameter in electrode preparation is the adhesion of the coating to the current collector, which greatly affects the cyclability of the electrode. Therefore, the relationship between adhesion strength and cycle performance was investigate in this study. Charge/discharge cycle tests elucidated that Sn-coated MCMB showed higher capacity than MCMB. Compared with MCMB, the second discharge capacity of Sn–coated MCMB increased about 28.8%. After 50 cycles, the reversible capacity was about 339.6 mAhg-1. The capacity retention ratio C25/C2 was about 80.87%. It was shown good cycle life due to the nano-particles effects retarded to Sn aggregation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

1000-1005

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.D. Tran, J.H. Feikert, X. Song, K. Kinoshita, J. Electrochem. Soc. 142 (1995) 3297-3302.

Google Scholar

[2] I. A. Courtney, J. R. Dahn, J. Electrochem. Soc. 144 (1997) 2943-2948.

Google Scholar

[3] I. A. Courtney, W. R. McKinnon, J. R. Dahn, J. Electrochem. Soc. 146 (1999) 59-68.

Google Scholar

[4] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276 (1997) 1395-1397.

DOI: 10.1126/science.276.5317.1395

Google Scholar

[5] J. O. Besenhard, J. Yang, M. Winter, J. Power Sources 68 (1997) 87-90.

Google Scholar

[6] C. S. Wang, A. John Appleby, Frank E. Little, J. Power Sources 93 (2001) 174-185.

Google Scholar

[7] R. A. Huggins, Solid State Ionics 113-115 (1998) 57-67.

Google Scholar

[8] J. O. Besenhard, M. Wachtler, M. Winter, R. Andreaus, I. Rom, W. Sitte, J. Power Sources 81-82 (1999) 268-272.

DOI: 10.1016/s0378-7753(99)00199-8

Google Scholar

[9] K. F. Chiu, H. C. Lin, K. M. Lin, T. Y. Lin, D. T. Shieh, J. Electrochem. Soc., 153 (2006) A1038-A1042.

Google Scholar

[10] K. F. Chiu, H. C. Lin, K. M. Lin, T. Y. Lin, D. T. Shieh, J. Electrochem. Soc., 153 (2006) A920-A924.

Google Scholar

[11] W. Choi, J. Y. Lee, B. H. Jung, H. S. Lim, J. Power Sources 136 (2004) 154-159.

Google Scholar

[12] T. Zhang, L.J. Fu, J. Gao, Y.P. Wu, R. Holze, H.Q. Wu, J. Power Sources 174 (2007) 770-773.

Google Scholar

[13] Y. N. Nuli, S. L. Zhao, Q. Z. Qin, J. Power Sources 114 (2003) 113-120.

Google Scholar

[14] S. T. Chang, I. L. Leu, M. H. Hon, Electrochemical and Solid-State Letters, 5 (2002) C71-C74.

Google Scholar

[15] G. X. Wang, J. Yao, H. K. Liu, S. X. Dou, J. h. Ahn, Electorchemical Acta, 50 (2004) 517-522.

Google Scholar

[16] B. Veeraraghavan, A. Durairajan, B. Haran, B. Popov, R. Guidotti, Journal of The Electrochemical Society, 149 (2002) A675-A681.

DOI: 10.1149/1.1470653

Google Scholar

[17] L. Balan, R. Schneider, P. Willmann, D. Billaud, Journal of Power Sources, 161 (2006) 587-593.

Google Scholar

[18] A. Trifonova, M. Winter, J.O. Besenhard, Journal of Power Sources 174 (2007) 800–804.

Google Scholar

[19] J. Y. Lee, R. Zhang, Z. Liu, Journal of Power Sources 90 (2000) 70–75.

Google Scholar

[20] T. Huang, Y. Yao, Z. Wei, Z. Liu, A. Yu, Electrochimica Acta 56 (2010) 476–482.

Google Scholar

[21] Y. C. Chen, J. M. Chen, Y. H. Huang, Y. R. Lee, H. C. Shih, Surface and Coating Technology 202 (2007) 1313-1318.

Google Scholar

[22] L. Balan, R. Schneider, P. Willmann, D. Billaud, Journal of Power Sources 161 (2006) 587–593.

Google Scholar

[23] T. Fang, L. Y. Hsiao, J. G. Duh, S. R. Sheen, Journal of Power Sources 160 (2006) 536–541.

Google Scholar

[24] G. X. Wang, J. H. Ahn, M. J. Lindsay, L. Sun, D. H. Bradhurst, S. X. Dou, H. K. Liu, Journal of Power Sources, 97-98 (2001) 211-215.

DOI: 10.1016/s0378-7753(01)00619-x

Google Scholar

[25] L. Beaulieu, D. Larcher, R.A. Dunlap, J.R. Dahn, Journal of Alloys and Compounds 297 (2000) 122–128.

Google Scholar

[26] J. Hassoun a, G. Mulas b, S. Panero a, B. Scrosati, Electrochemistry Communications 9 (2007) 2075–(2081).

DOI: 10.1016/j.elecom.2007.05.033

Google Scholar

[27] K. Wang, X. He, J. Ren, C. Jiang, C. Wan, Journal of New Materials for Electrochemical Systems, 10 (2007) 167-170.

Google Scholar

[28] J. K. Lee, D.H. Ryu, J. B. Ju, Y.G. Shul, B.W. Cho, D. Park, Journal of Power Sources 107 (2002) 90–97.

Google Scholar

[29] L. Yuan, K. Konstantinov, G. X. Wang, H. K. Liu, S. X. Dou, Journal of Power Sources 146 (2005) 180–184.

Google Scholar

[30] R. Ayouchi, F. Martin, J. R. R. Barrado, M. Martos, J. Morales c, ), L. Sa´nchez, Journal of Power Sources 87 (2000) 106–111.

Google Scholar

[31] F. Robert, F. Morato, J. Chouvin, L. Aldon, P. E. Lippens, J. O. Fourcade, J. C. Jumas, B. Simon, P. Biensan, Journal of Power Sources 119–121 (2003) 581–584.

DOI: 10.1016/s0378-7753(03)00294-5

Google Scholar

[32] M. Marcinek, L. J. Hardwick, T. J. Richardson, X. Song, R. Kostecki, Journal of Power Sources 173 (2007) 965–971.

Google Scholar

[33] P. Meduri, C. Pendyala, Vi. Kumar, G. U. Sumanasekera, M. K. Sunkara, Nano Letters, 9 (2009) 612-616.

Google Scholar

[34] Sasaki KY, Talbot JB (2000) J Electrochem Soc 147: 189.

Google Scholar

[35] J. O'M Bockris, D. Drazic, and A. R. Despic, Electrochim. Acta, 4, 325 (1961).

Google Scholar