Photocatalytic Activity of TiO2-Calcium Phosphate Nanocomposite on the Removal of Methylene Blue in Aqueous Suspension

Article Preview

Abstract:

The TiO2-calcium phosphate (TiO2/CP) nanocomposites with different ratios were prepared by precipitation of calcium phosphate in the presence of nano-sized TiO2. The products were characterized by BET, XRD, SEM and EDX techniques. Photocatalytic activity of the nanocomposites was evaluated as a rate constant of decomposition reaction of methylene blue (MB) in aqueous suspensions under UVA irradiation. It was observed that all of the nanocomposites showed higher photocatalytic activity in comparison to pure TiO2 catalyst. In particular, the rate constant photodecomposition of MB on TiO2/CP composite at 9:1 ratio (w/w) was above five times higher than on pure TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

995-999

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Legrini, E. Oliveros, A.M. Braun: Chem. Rev. 93 (1993), p.671.

Google Scholar

[2] Barakat MA, Schaeffer H, Hayes G: Applied Catalysis B: Environmental, 57(1) (2005), p.23.

Google Scholar

[3] Xie Y. And Yuan C.: Applied Catalysis B: Environmental 46 (2003), p.251.

Google Scholar

[4] Mitsunobu Iwasaki, Yuki Miyamotoa, Seishiro Ito, Tsutomu Furuzono, Won-Kyu Parkd: Journal of Colloid and Interface Science 326 (2008), p.537.

Google Scholar

[5] Akira Kobayashi, Wei Jiang: Vacuum 83 (2009), p.86.

Google Scholar

[6] Faheem A. Sheikha, Muzafar A. Kanjwal, Hak Yong Kim, Hern Kim: Applied Surface Science 257 (2010), p.296.

Google Scholar

[7] Venkatachalam Rajendran, Gurusamy Rajkumar, Samickannian Aravindan, Balasubramani Saravanakumar: Journal of the American Ceramic Society, Vol. 93, Issue 12 (2010), p.4053.

Google Scholar

[8] H. El Boujaady, A. El Rhilassi, M. Bennani-Ziatni, R. El Hamri, A. Taitai, J.L. Lacout: Desalination 275 (2011), p.10.

DOI: 10.1016/j.desal.2011.03.036

Google Scholar

[9] Y. Liu, C.Y. Liu, J.H. Wei, R. Xionga, C.X. Pan, J. Shi: Applied SurfaceScience 256 (2010), p.6390.

Google Scholar

[10] Jungho Ryu, Kun-Young Kim, Byung-Dong Hahn, Jong-Jin Choi, Woon-Ha Yoon, Byoung-Kuk Lee, Dong-Soo Park, Chan Park: Catalysis Communications 10 (2009), p.596.

DOI: 10.1109/isaf.2007.4393298

Google Scholar

[11] Beata Zielinska, Antoni Waldemar Morawski: Applied Catalysis B: Environmental 55 (2005) p.221.

Google Scholar

[12] Milica Todea, Teodora Marcu, Monica Tamasan, Simion Simon, Catalin Popa: Studia UBB Chemia, lvi, 3 (2011), p.147.

Google Scholar

[13] Rastegar M, Shadbad KR, Khataee AR, Pourrajab R.: Environ Technol., 33(7-9) (2012), p.995.

Google Scholar

[14] Zhang Q., Gao L., Guo J. Applied Catalysis B: Environmental, 26 (2000), p.207.

Google Scholar