[1]
Duan, H.L., et al., Stress concentration tensors of inhomogeneities with interface effects. Mechanics of Materials, 2005. 37(7): pp.723-736.
DOI: 10.1016/j.mechmat.2004.07.004
Google Scholar
[2]
Duan, H.L., et al., Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Materialia, 2006. 54(11): pp.2983-2990.
DOI: 10.1016/j.actamat.2006.02.035
Google Scholar
[3]
Cox, H.L., The Elasticity and the Strength of Paper and other Fibrous Materials. British Journal of Applied Physics, 1952. 3: pp.72-79.
DOI: 10.1088/0508-3443/3/3/302
Google Scholar
[4]
Jiang, Z., et al., Elastic-plastic stress transfer in short fibre-reinforced metal-matrix composites. Composites Science and Technology, 2004. 64(10-11): pp.1661-1670.
DOI: 10.1016/j.compscitech.2003.12.003
Google Scholar
[5]
Wu, W., et al., An improved analysis of the stresses in a single-fibre fragmentation test: I. Two-phase model. Composites Science and Technology, 1997. 57(7): pp.809-819.
DOI: 10.1016/s0266-3538(97)00050-x
Google Scholar
[6]
Jiang, Z., et al., An analytical model for elastic stress field distribution in fibre composite with partially debonded interface. Composites Science and Technology, 2005. 65(7-8): pp.1176-1194.
DOI: 10.1016/j.compscitech.2004.11.014
Google Scholar
[7]
Arsenault, R.J. and M. Taya, Thermal residual stress in metal matrix composite. Acta Metallurgica, 1987. 35(3): pp.651-659.
DOI: 10.1016/0001-6160(87)90188-x
Google Scholar
[8]
Eshelby, J.D., 1957: pp.376-96.
Google Scholar
[9]
Povirk, G.L., A. Needleman, and S.R. Nutt, An analysis of residual stress formation in whisker-reinforced Al-SiC composites. Materials Science and Engineering: A, 1990. 125(2): pp.129-140.
DOI: 10.1016/0921-5093(90)90165-y
Google Scholar
[10]
Shi, N., B. Wilner, and R.J. Arsenault, An FEM study of the plastic deformation process of whisker reinforced SiC/Al composites. Acta Metallurgica et Materialia, 1992. 40(11): pp.2841-2854.
DOI: 10.1016/0956-7151(92)90449-o
Google Scholar
[11]
Nairn, J.A. and D.A. Mendels, On the Use of Planar Shear-Lag Methods for Stress-Transfer Analysis of Multilayered Composites. Mechanics of Materials, 2001. 33: pp.335-362.
DOI: 10.1016/s0167-6636(01)00056-4
Google Scholar
[12]
Jiang, Z., et al., A new analytical model for three-dimensional elastic stress field distribution in short fibre composite. Materials Science and Engineering: A, 2004. 366(2): pp.381-396.
DOI: 10.1016/j.msea.2003.09.055
Google Scholar
[13]
Abedian, A., M. Mondali, and M. Pahlavanpour, Basic modifications in 3D micromechanical modeling of short fiber composites with bonded and debonded fiber end. Computational Materials Science, 2007. 40(3): pp.421-433.
DOI: 10.1016/j.commatsci.2007.01.021
Google Scholar
[14]
Gurtin, M.E. and A. Ian Murdoch, A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 1975. 57(4): pp.291-323.
DOI: 10.1007/bf00261375
Google Scholar
[15]
Sharma, P., S. Ganti, and N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 2003. 82(4): pp.535-537.
DOI: 10.1063/1.1539929
Google Scholar
[16]
Wang, G.F. and X.Q. Feng, Effects of surface stresses on contact problems at nanoscale. Journal of Applied Physics, 2007. 101(1).
Google Scholar
[17]
Mogilevskaya, S.G., et al., The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites. Composites Science and Technology. 70(3): pp.427-434.
DOI: 10.1016/j.compscitech.2009.11.012
Google Scholar
[18]
Chen, T., G.J. Dvorak, and C.C. Yu, Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mechanica, 2007. 188(1-2): pp.39-54.
DOI: 10.1007/s00707-006-0371-2
Google Scholar
[19]
Moshtaghin, A.F., R. Naghdabadi, and M. Asghari, Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids. Mechanics of Materials. 51(0): pp.74-87.
DOI: 10.1016/j.mechmat.2012.04.001
Google Scholar
[20]
Hsueh, C.H., A modified analysis for stress transfer in fibre-reinforced composites with bonded fibre ends. Journal of Materials Science, 1995. 30(1): pp.219-224.
DOI: 10.1007/bf00352153
Google Scholar
[21]
Chen, T., M. -S. Chiu, and C. -N. Weng, Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 2006. 100(7).
DOI: 10.1063/1.2356094
Google Scholar