Effects of Surface Elasticity on 3D Micromechanical Modeling of Short Fiber Nanocomposites

Article Preview

Abstract:

Recent studies have shown that the surface/interface free energy plays an important role in the effective mechanical properties of solids with nanosized inhomogeneity. In the present study, an analytical model is developed for 3D axisymmetric analysis of short fiber nanocomposites including the fiber end region, subjected to an applied axial load considering surface effects. Closed form expressions are obtained for 3D stress filed in the fiber and matrix. Moreover, performing numerical examples, it is shown that the elastic stress field is size dependent in both the fiber and matrix especially for fiber radii less than 50 nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

975-979

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Duan, H.L., et al., Stress concentration tensors of inhomogeneities with interface effects. Mechanics of Materials, 2005. 37(7): pp.723-736.

DOI: 10.1016/j.mechmat.2004.07.004

Google Scholar

[2] Duan, H.L., et al., Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Materialia, 2006. 54(11): pp.2983-2990.

DOI: 10.1016/j.actamat.2006.02.035

Google Scholar

[3] Cox, H.L., The Elasticity and the Strength of Paper and other Fibrous Materials. British Journal of Applied Physics, 1952. 3: pp.72-79.

DOI: 10.1088/0508-3443/3/3/302

Google Scholar

[4] Jiang, Z., et al., Elastic-plastic stress transfer in short fibre-reinforced metal-matrix composites. Composites Science and Technology, 2004. 64(10-11): pp.1661-1670.

DOI: 10.1016/j.compscitech.2003.12.003

Google Scholar

[5] Wu, W., et al., An improved analysis of the stresses in a single-fibre fragmentation test: I. Two-phase model. Composites Science and Technology, 1997. 57(7): pp.809-819.

DOI: 10.1016/s0266-3538(97)00050-x

Google Scholar

[6] Jiang, Z., et al., An analytical model for elastic stress field distribution in fibre composite with partially debonded interface. Composites Science and Technology, 2005. 65(7-8): pp.1176-1194.

DOI: 10.1016/j.compscitech.2004.11.014

Google Scholar

[7] Arsenault, R.J. and M. Taya, Thermal residual stress in metal matrix composite. Acta Metallurgica, 1987. 35(3): pp.651-659.

DOI: 10.1016/0001-6160(87)90188-x

Google Scholar

[8] Eshelby, J.D., 1957: pp.376-96.

Google Scholar

[9] Povirk, G.L., A. Needleman, and S.R. Nutt, An analysis of residual stress formation in whisker-reinforced Al-SiC composites. Materials Science and Engineering: A, 1990. 125(2): pp.129-140.

DOI: 10.1016/0921-5093(90)90165-y

Google Scholar

[10] Shi, N., B. Wilner, and R.J. Arsenault, An FEM study of the plastic deformation process of whisker reinforced SiC/Al composites. Acta Metallurgica et Materialia, 1992. 40(11): pp.2841-2854.

DOI: 10.1016/0956-7151(92)90449-o

Google Scholar

[11] Nairn, J.A. and D.A. Mendels, On the Use of Planar Shear-Lag Methods for Stress-Transfer Analysis of Multilayered Composites. Mechanics of Materials, 2001. 33: pp.335-362.

DOI: 10.1016/s0167-6636(01)00056-4

Google Scholar

[12] Jiang, Z., et al., A new analytical model for three-dimensional elastic stress field distribution in short fibre composite. Materials Science and Engineering: A, 2004. 366(2): pp.381-396.

DOI: 10.1016/j.msea.2003.09.055

Google Scholar

[13] Abedian, A., M. Mondali, and M. Pahlavanpour, Basic modifications in 3D micromechanical modeling of short fiber composites with bonded and debonded fiber end. Computational Materials Science, 2007. 40(3): pp.421-433.

DOI: 10.1016/j.commatsci.2007.01.021

Google Scholar

[14] Gurtin, M.E. and A. Ian Murdoch, A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 1975. 57(4): pp.291-323.

DOI: 10.1007/bf00261375

Google Scholar

[15] Sharma, P., S. Ganti, and N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 2003. 82(4): pp.535-537.

DOI: 10.1063/1.1539929

Google Scholar

[16] Wang, G.F. and X.Q. Feng, Effects of surface stresses on contact problems at nanoscale. Journal of Applied Physics, 2007. 101(1).

Google Scholar

[17] Mogilevskaya, S.G., et al., The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites. Composites Science and Technology. 70(3): pp.427-434.

DOI: 10.1016/j.compscitech.2009.11.012

Google Scholar

[18] Chen, T., G.J. Dvorak, and C.C. Yu, Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mechanica, 2007. 188(1-2): pp.39-54.

DOI: 10.1007/s00707-006-0371-2

Google Scholar

[19] Moshtaghin, A.F., R. Naghdabadi, and M. Asghari, Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids. Mechanics of Materials. 51(0): pp.74-87.

DOI: 10.1016/j.mechmat.2012.04.001

Google Scholar

[20] Hsueh, C.H., A modified analysis for stress transfer in fibre-reinforced composites with bonded fibre ends. Journal of Materials Science, 1995. 30(1): pp.219-224.

DOI: 10.1007/bf00352153

Google Scholar

[21] Chen, T., M. -S. Chiu, and C. -N. Weng, Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 2006. 100(7).

DOI: 10.1063/1.2356094

Google Scholar