Thermal Effect on Dynamic Stability of Single-Walled Carbon Nanotubes in Low and High Temperatures Based on Nonlocal Shell Theory

Article Preview

Abstract:

This paper studies the thermal effect on dynamic stability of single-walled carbon nanotubes (SWCNTs) embedded in polymer matrix in low and high temperatures under impact loads. To this end, we present a nonlocal elastic shell model including thermal and small-size effects. Further, numerical calculations are presented for SWCNTs. Results show that the increasing in temperature field has the effect of increasing the dynamic buckling loads at low or room temperature. However, this effect leads to decrease the dynamic buckling loads at high temperature. In addition, it is observed that nonlocal dynamic buckling loads increase by an increase in the Neperian frequency.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

959-964

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Helical micro tubes of graphitic carbon, Nature 354 (1991) 56-58.

Google Scholar

[2] Y.Z. Wang, F.M. Li and K. Kishimoto: Scale effects on thermal buckling properties of carbon nanotube, Phys. Lett. A 374 (2010) 4890–4893.

DOI: 10.1016/j.physleta.2010.10.016

Google Scholar

[3] Y.Y. Zhang, C.M. Wang, W.H. Duan, Y. Xiang and Z. Zong: Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes, Nanotechnology 20 (2009) 395707.

DOI: 10.1088/0957-4484/20/39/395707

Google Scholar

[4] B.I. Yakobson, C.J. Brabec and J. Bernholc: Nanomechanics of carbon tubes: instabilities beyond linear response, Phys. Rev. Lett. 76 (1996) 2511–2514.

DOI: 10.1103/physrevlett.76.2511

Google Scholar

[5] A. Muc: Modelling of carbon nanotubes behaviour with the use of a thin shell theory, J. Theor. Appl. Mech. 49 (2011) 2, 531-540.

Google Scholar

[6] C.Y. Wei, K. Cho and D.P. Srivastava: Tensile strength of carbon nanotubes under realistic temperature and strain rate, Phys. Rev. B 67(1–6) (2003) 115407.

DOI: 10.1103/physrevb.67.115407

Google Scholar

[7] R.B. Pipesa and P. Hubertb: Helical carbon nanotube arrays: thermal expansion, Compos. Sci . Technol. 63 (2003) 1571–1579.

Google Scholar

[8] H. Jiang, B. Liu, Y. Huang and K.C. Hwang: Thermal expansion of single wall carbon nanotubes, J. Eng. Mater. Technol. Trans ASME 126(3) (2004) 265–270.

DOI: 10.1115/1.1752925

Google Scholar

[9] J. Feliciano, C. Tang, Y. Zhang and C. Chen: Aspect ratio dependent buckling mode transition in single-walled carbon nano-tubes under compression, J. Appl. Phys. 109 (2011) 084323.

DOI: 10.1063/1.3569616

Google Scholar

[10] C.M. Wang, Y.Y. Zhang, Y. Xiang and J.N. Reddy: Recent Studies on Buckling of Carbon Nanotubes, Appl. Mech. Rev. 63 (2010) 030804.

Google Scholar

[11] Y. Xiaohu and H. Qiang: Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field, Compos. Sci. Technol. 67 (2007) 125–134.

DOI: 10.1016/j.compscitech.2006.03.021

Google Scholar

[12] J. Peddieson, G.R. Buchanan and R.P. McNitt: Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci. 41 (2003) 305–312.

DOI: 10.1016/s0020-7225(02)00210-0

Google Scholar

[13] C. Sun and K. Liu: Dynamic buckling of double-walled carbon nanotubes under step axial load, Acta Mech. Solida Sin. 22 (2009) 27-36.

DOI: 10.1016/s0894-9166(09)60087-2

Google Scholar

[14] C. Sun and K. Liu: Dynamic torsional buckling of a double-walled carbon nanotube embedded in an elastic medium, Eur. J. Mech. A. Solids 27 (2008) 40-49.

DOI: 10.1016/j.euromechsol.2007.04.002

Google Scholar

[15] A. Ghorbanpour Arani, M. Hashemian, A. Loghman and M. Mohammadimehr: Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method, J. Appl. Mech. Tech. Phys. 52 (2011).

DOI: 10.1134/s0021894411050178

Google Scholar

[16] A.C. Eringen: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703–4710.

DOI: 10.1063/1.332803

Google Scholar

[17] Y.Q. Zhang, X. Liu and J.H. Zhao: Influence of temperature change on column buckling of multiwalled carbon nanotubes, Phys. Lett. A 372, 10 (2008) 1671-1681.

DOI: 10.1016/j.physleta.2007.10.033

Google Scholar

[18] X. Yao and Q. Han: The thermal effect on axially compressed buckling of a double-walled carbon nanotube, Eur. J. Mech. A. Solids 26 (2007) 298-312.

DOI: 10.1016/j.euromechsol.2006.05.009

Google Scholar

[19] A. Ghorbanpour Arani, A.A. Mosallaie Barzoki, R. Kolahchi and A. Loghman: Pasternak foundation effect on the axial and torsional waves propagation in embedded DWCNTs using nonlocal elasticity cylindrical shell theory, J. Mech. Sci. Technol. 25 (2011).

DOI: 10.1007/s12206-011-0712-5

Google Scholar