[1]
S. Iijima: Helical micro tubes of graphitic carbon, Nature 354 (1991) 56-58.
Google Scholar
[2]
Y.Z. Wang, F.M. Li and K. Kishimoto: Scale effects on thermal buckling properties of carbon nanotube, Phys. Lett. A 374 (2010) 4890–4893.
DOI: 10.1016/j.physleta.2010.10.016
Google Scholar
[3]
Y.Y. Zhang, C.M. Wang, W.H. Duan, Y. Xiang and Z. Zong: Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes, Nanotechnology 20 (2009) 395707.
DOI: 10.1088/0957-4484/20/39/395707
Google Scholar
[4]
B.I. Yakobson, C.J. Brabec and J. Bernholc: Nanomechanics of carbon tubes: instabilities beyond linear response, Phys. Rev. Lett. 76 (1996) 2511–2514.
DOI: 10.1103/physrevlett.76.2511
Google Scholar
[5]
A. Muc: Modelling of carbon nanotubes behaviour with the use of a thin shell theory, J. Theor. Appl. Mech. 49 (2011) 2, 531-540.
Google Scholar
[6]
C.Y. Wei, K. Cho and D.P. Srivastava: Tensile strength of carbon nanotubes under realistic temperature and strain rate, Phys. Rev. B 67(1–6) (2003) 115407.
DOI: 10.1103/physrevb.67.115407
Google Scholar
[7]
R.B. Pipesa and P. Hubertb: Helical carbon nanotube arrays: thermal expansion, Compos. Sci . Technol. 63 (2003) 1571–1579.
Google Scholar
[8]
H. Jiang, B. Liu, Y. Huang and K.C. Hwang: Thermal expansion of single wall carbon nanotubes, J. Eng. Mater. Technol. Trans ASME 126(3) (2004) 265–270.
DOI: 10.1115/1.1752925
Google Scholar
[9]
J. Feliciano, C. Tang, Y. Zhang and C. Chen: Aspect ratio dependent buckling mode transition in single-walled carbon nano-tubes under compression, J. Appl. Phys. 109 (2011) 084323.
DOI: 10.1063/1.3569616
Google Scholar
[10]
C.M. Wang, Y.Y. Zhang, Y. Xiang and J.N. Reddy: Recent Studies on Buckling of Carbon Nanotubes, Appl. Mech. Rev. 63 (2010) 030804.
Google Scholar
[11]
Y. Xiaohu and H. Qiang: Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field, Compos. Sci. Technol. 67 (2007) 125–134.
DOI: 10.1016/j.compscitech.2006.03.021
Google Scholar
[12]
J. Peddieson, G.R. Buchanan and R.P. McNitt: Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci. 41 (2003) 305–312.
DOI: 10.1016/s0020-7225(02)00210-0
Google Scholar
[13]
C. Sun and K. Liu: Dynamic buckling of double-walled carbon nanotubes under step axial load, Acta Mech. Solida Sin. 22 (2009) 27-36.
DOI: 10.1016/s0894-9166(09)60087-2
Google Scholar
[14]
C. Sun and K. Liu: Dynamic torsional buckling of a double-walled carbon nanotube embedded in an elastic medium, Eur. J. Mech. A. Solids 27 (2008) 40-49.
DOI: 10.1016/j.euromechsol.2007.04.002
Google Scholar
[15]
A. Ghorbanpour Arani, M. Hashemian, A. Loghman and M. Mohammadimehr: Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method, J. Appl. Mech. Tech. Phys. 52 (2011).
DOI: 10.1134/s0021894411050178
Google Scholar
[16]
A.C. Eringen: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703–4710.
DOI: 10.1063/1.332803
Google Scholar
[17]
Y.Q. Zhang, X. Liu and J.H. Zhao: Influence of temperature change on column buckling of multiwalled carbon nanotubes, Phys. Lett. A 372, 10 (2008) 1671-1681.
DOI: 10.1016/j.physleta.2007.10.033
Google Scholar
[18]
X. Yao and Q. Han: The thermal effect on axially compressed buckling of a double-walled carbon nanotube, Eur. J. Mech. A. Solids 26 (2007) 298-312.
DOI: 10.1016/j.euromechsol.2006.05.009
Google Scholar
[19]
A. Ghorbanpour Arani, A.A. Mosallaie Barzoki, R. Kolahchi and A. Loghman: Pasternak foundation effect on the axial and torsional waves propagation in embedded DWCNTs using nonlocal elasticity cylindrical shell theory, J. Mech. Sci. Technol. 25 (2011).
DOI: 10.1007/s12206-011-0712-5
Google Scholar