Control of Pore Size of High Purity Nanoporous Silica Formed from Volcanic Ash Deposit Shirasu

Article Preview

Abstract:

High purity nanoporous silica was fabricated using Shirasu volcanic ash as a starting material. The starting materials were placed into a platinum crucible and were melted at 1400°C. A mother glass was formed by quenching the melt in pure water. Leaching was performed by immersing the mother glass into an HCl solution. Nonsilica phases formed by phase separation in the mother glass were leached out with acid solution. The obtained porous silica was more than 99% pure and had pore size smaller than 2 nm. In order to control the pore size, post heat treatment was performed. The pore size could be controlled from 3.1 to 21.7 nm by changing the post treatment temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

970-974

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Werner, K. Otto, D. Enke, G. Pelzl, F. Janowski, H. Kresse: Liquid Crystals Vol. 27 (2000) p.1295.

DOI: 10.1080/026782900423331

Google Scholar

[2] V. Reshetnyak, L. Shanski, O. Yaroshchuk, A. Tereshchenko, J. Lindau, G. Pelzl, F. Janowski, K. Otto: Molecular Crystals and Liquid Crystals Vol. 329 (1999) p.447.

DOI: 10.1080/10587259908025968

Google Scholar

[3] M.P. Xavier, B. Vallejo, M.D. Marazuela, M.C. MorenoBondi, F. Baldini, A. Falai: Biosensors and Bioelectronics Vol. 14 (2000) p.895.

DOI: 10.1016/s0956-5663(99)00066-4

Google Scholar

[4] P.T. Sotomayor, I.M. Raimundo, A.J.G. Zarbin, J.J.R. Rohwedder, G.O. Neto, O.L. Alves: Sensors Actuators B. 74 (2001) p.157.

Google Scholar

[5] W. Schwieger, M. Rauscher, R. Möonnig, F. Scheffler, D. Freude, edited by A. Sayari, M. Jaroniec, T.J. Pinnavaia: Nanoporous Materials II, Studies in Surface Science and Catalysis, Vol. 129, Elsevier, Amsterdam (2000) p.121.

DOI: 10.1016/s0167-2991(00)80205-0

Google Scholar

[6] K. Kuraoka, Y. Chujo, T. Yazawa: Journal of Membrane Science Vol. 182 (2001) p.139.

Google Scholar

[7] W. Haller, D.H. Blackburn, F.E. Wagstaff, R.J. Charles: J. Am. Ceram. Soc. Vol. 53 (1970) p.34.

Google Scholar

[8] T.H. Elmer, M.E. Nordberg, G.B. Carrier, E.J. Korda: J. Am. Ceram. Soc. Vol. 53 (1970) p.171.

Google Scholar

[9] M. Kukizaki: Journal of Membrane Science Vol. 360 (2010) p.426.

Google Scholar

[10] T. Nakashima, Y. Kuroki: Nippon Kagaku Kaishi Vol. 8 (1981) p.1231.

Google Scholar

[11] T. Nakashima, M. Shimizu, M. Kukizaki: Key Engineer Materials Vols. 61-62 (1991) p.513.

Google Scholar

[12] T. Sano, H. Yanagishita, Y. Kiyozumi, F. Mizukami, K. Haraya: Journal of Membrane Science Vol. 95 (1994) p.221.

DOI: 10.1016/0376-7388(94)00120-0

Google Scholar

[13] I. Fuziyoshi: J. Catal. Vol. 129 (1991) p.544.

Google Scholar

[14] N.Y. Chen: J. Phys. Chem. Vol. 80 (1976) p.60.

Google Scholar

[15] M. Suzuki, T. Tanaka: ISIJ International Vol. 48 (2008) p.1524.

Google Scholar

[16] Y. Moriya: Journal of the Society of Materials Science, Japan Vol. 19 (1970) p.705.

Google Scholar

[17] J.H. Li, D.R. Uhlmann: Journal of Non-Crystalline Solids Vol. 3 (1970) p.205.

Google Scholar

[18] S. Hornschuh, B. Messerschmidt, T. Possner, U. Possner, C. Rüssel: Journal of Non-Crystalline Solids Vol. 352 (2006) p.4076.

DOI: 10.1016/j.jnoncrysol.2006.06.029

Google Scholar

[19] A. Kondratiev, P.C. Hayes, E. Jak: ISIJ International Vol. 46 (2006) p.359.

Google Scholar

[20] P.P. Bihuniak, A. Calabress, E.M. Erwin: J. Am. Ceram. Soc. Vol. 66 (1983) p. C134.

Google Scholar